The Decoy-State Measurement-Device-Independent Quantum Key Distribution with Heralded Single-Photon Source

被引:8
作者
He, Ye-Feng [1 ]
Ma, Wen-Ping [2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Cyberspace Secur, Xian 710121, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum cryptography; Measurement-device-independent quantum key distribution; Heralded single-photon source; Orbital angular momentum; Pulse position modulation; STATISTICAL FLUCTUATION ANALYSIS; SECURE DIRECT COMMUNICATION; PROTOCOL; TIME;
D O I
10.1007/s10773-019-04376-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on heralded single-photon source (HSPS), a decoy-state measurement-device-independent quantum key distribution (MDI-QKD) protocol is proposed in this paper. The MDI-QKD protocol mainly uses orbital angular momentum (OAM) states and pulse position modulation (PPM) technology to realize the coding of the signal states in heralded single-photon source. The three-intensity decoy states are used to avoid the attacks against the light source. Moreover, the formula of key generation rate is given by computing the lower bound of the yield of single-photon pairs and the upper bound of the error rate of single-photon pairs. Numerical simulation shows that the new MDI-QKD protocol has high key generation rate and low error rate. Moreover, the secure communication distance can be up to 450 km.
引用
收藏
页码:908 / 917
页数:10
相关论文
共 41 条
[1]   No signaling and quantum key distribution [J].
Barrett, J ;
Hardy, L ;
Kent, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[2]  
Bennett C. H., 1984, P IEEE INT C COMP SY, DOI [10.1016/j.tcs.2014.05.025, DOI 10.1016/J.TCS.2014.05.025]
[3]   Modeling a measurement-device-independent quantum key distribution system [J].
Chan, P. ;
Slater, J. A. ;
Lucio-Martinez, I. ;
Rubenok, A. ;
Tittel, W. .
OPTICS EXPRESS, 2014, 22 (11) :12716-12736
[4]   Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits [J].
Ferreira da Silva, T. ;
Vitoreti, D. ;
Xavier, G. B. ;
do Amaral, G. C. ;
Temporao, G. P. ;
von der Weid, J. P. .
PHYSICAL REVIEW A, 2013, 88 (05)
[5]   Quantum private query: A new kind of practical quantum cryptographic protocol [J].
Gao, Fei ;
Qin, SuJuan ;
Huang, Wei ;
Wen, QiaoYan .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (07)
[6]   Polarization-Multiplexed Quadrature Amplitude Modulation for Continuous-Variable Quantum Key Distribution [J].
Guo, Ying ;
Wang, Xiaoxue ;
Zhang, Ling ;
Huang, Duan .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (01) :209-220
[7]   Multiparty quantum secure direct communication immune to collective noise [J].
He, Ye-Feng ;
Ma, Wen-Ping .
QUANTUM INFORMATION PROCESSING, 2019, 18 (01)
[8]   Three-party quantum secure direct communication against collective noise [J].
He, Ye-Feng ;
Ma, Wen-Ping .
QUANTUM INFORMATION PROCESSING, 2017, 16 (10)
[9]   Two-party quantum key agreement against collective noise [J].
He, Ye-Feng ;
Ma, Wen-Ping .
QUANTUM INFORMATION PROCESSING, 2016, 15 (12) :5023-5035
[10]   Quantum key agreement protocols with four-qubit cluster states [J].
He, Ye-Feng ;
Ma, Wen-Ping .
QUANTUM INFORMATION PROCESSING, 2015, 14 (09) :3483-3498