A SiOx-Based Anode in a High-Voltage Lithium-Ion Battery

被引:28
作者
Elia, Giuseppe Antonio [1 ]
Hassoun, Jusef [2 ]
机构
[1] Tech Univ Berlin, Res Ctr Microperipher Technol, Gustav Meyer Allee 25, D-13355 Berlin, Germany
[2] Univ Ferrara, Dept Chem & Pharmaceut Sci, Via Fossato Mortara 17, I-44121 Ferrara, Italy
关键词
silicon materials; energy storage; high-capacity; lithium-ion battery; nanocomposites; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; HOLLOW NANOSPHERES; CATHODE MATERIALS; ENERGY-STORAGE; C COMPOSITE; LI; CARBON; DESIGN;
D O I
10.1002/celc.201700316
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A novel synthetic procedure for the preparation of a SiOx-based nanocomposite, involving gelification of resorcinol-formaldehyde and tetraethyl orthosilicate, is reported. The composite is characterized as an anode material in a lithium-ion battery. The micrometric, amorphous material has a characteristic nanostructured configuration and shows an electrochemical process involving both the alloying of Li-Si and the insertion of Li into the hard carbon matrix. The electrode reveals in a lithium half-cell a relatively low impedance and a reversible capacity ranging from 650 mAh g(-1), at the lower current, to 400 mAh g(-1) at high current regimes, with a cycle life extending to 200 cycles. The anode is combined with a high-voltage LiNi0.5 Mn1.5O4 spinel cathode in a 4.3 V lithium-ion battery delivering a capacity of about 115 mAh g(-1) and operating at the high rate of 5C. The suitable synthesis pathway, the low cost and the promising electrochemical behavior suggest the nanocomposite anode for application in high-performance lithium-ion battery.
引用
收藏
页码:2164 / 2168
页数:5
相关论文
共 44 条
[1]   Preparation and properties of resorcinol-formaldehyde organic and carbon gels [J].
Al-Muhtaseb, SA ;
Ritter, JA .
ADVANCED MATERIALS, 2003, 15 (02) :101-+
[2]   Reduced Graphene Oxide in Cathode Formulations Based on LiNi0.5Mn1.5O4 [J].
Arbizzani, C. ;
Da Col, L. ;
De Giorgio, F. ;
Mastragostino, M. ;
Soavi, F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) :A2174-A2179
[3]  
Arrebola J. C., 2009, COMBINING 5 V LINI05
[4]   Design of electrolyte solutions for Li and Li-ion batteries: a review [J].
Aurbach, D ;
Talyosef, Y ;
Markovsky, B ;
Markevich, E ;
Zinigrad, E ;
Asraf, L ;
Gnanaraj, JS ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :247-254
[5]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[6]   A critical review on lithium-air battery electrolytes [J].
Balaish, Moran ;
Kraytsberg, Alexander ;
Ein-Eli, Yair .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (07) :2801-2822
[7]   Enhanced stability of SnSb/graphene anode through alternative binder and electrolyte additive for lithium ion batteries application [J].
Birrozzi, Agnese ;
Maroni, Fabio ;
Raccichini, Rinaldo ;
Tossici, Roberto ;
Marassi, Roberto ;
Nobili, Francesco .
JOURNAL OF POWER SOURCES, 2015, 294 :248-253
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   Quartz (SiO2): a new energy storage anode material for Li-ion batteries [J].
Chang, Won-Seok ;
Park, Cheol-Min ;
Kim, Jae-Hun ;
Kim, Young-Ugk ;
Jeong, Goojin ;
Sohn, Hun-Joon .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6895-6899
[10]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374