Building Extraction from RGB Satellite Images using Deep Learning: A U-Net Approach

被引:4
作者
Temenos, Anastasios [1 ]
Protopapadakis, Eftychios [1 ]
Doulamis, Anastasios [1 ]
Temenos, Nikos [1 ]
机构
[1] Natl Tech Univ Athens, Athens, Greece
来源
THE 14TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2021 | 2021年
关键词
Automatic Building Extraction; Remote Sensing; SpaceNet; 1; Deep Learning; CNN Building Extraction; U-Net; Semantic Segmentation;
D O I
10.1145/3453892.3461320
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic building extraction from satellite RGB images, is a low-cost alternative to perform important urban planning tasks. Yet, it is a challenging one, especially when natural and non-city block objects interfere in the semantic segmentation of algorithms that extract their key features. In this work we approach the automatic building extraction using a Convolution Neural Network based on the U-Net architecture. In contrast to existing approaches, it successfully encodes important features and decodes the buildings' localization by requiring both reduced computational time and dataset size. We evaluate the U-Net's performance using RGB images selected from the SpaceNet 1 dataset and the experimental results show an accuracy in building localization of 92.3%. Finally, favorable comparison with existing CNN approaches to hyper-spectral images targeting the SpaceNet 1 dataset, demonstrated its effectiveness.
引用
收藏
页码:391 / 395
页数:5
相关论文
共 20 条
  • [11] A Global Human Settlement Layer From Optical HR/VHR RS Data: Concept and First Results
    Pesaresi, Martino
    Guo Huadong
    Blaes, Xavier
    Ehrlich, Daniele
    Ferri, Stefano
    Gueguen, Lionel
    Halkia, Matina
    Kauffmann, Mayeul
    Kemper, Thomas
    Lu, Linlin
    Marin-Herrera, Mario A.
    Ouzounis, Georgios K.
    Scavazzon, Marco
    Soille, Pierre
    Syrris, Vasileios
    Zanchetta, Luigi
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (05) : 2102 - 2131
  • [12] Prathap G, 2018, 2018 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), P461, DOI 10.1109/IS.2018.8710471
  • [13] Stacked Autoencoders Driven by Semi-Supervised Learning for Building Extraction from near Infrared Remote Sensing Imagery
    Protopapadakis, Eftychios
    Doulamis, Anastasios
    Doulamis, Nikolaos
    Maltezos, Evangelos
    [J]. REMOTE SENSING, 2021, 13 (03) : 1 - 24
  • [14] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [15] Vakalopoulou M, 2017, INT GEOSCI REMOTE SE, P3309, DOI 10.1109/IGARSS.2017.8127705
  • [16] Van Etten A, 2018, Arxiv, DOI arXiv:1805.09512
  • [17] Van Etten A, 2019, Arxiv, DOI arXiv:1807.01232
  • [18] A service oriented architecture for decision support systems in environmental crisis management
    Vescoukis, Vassilios
    Doulamis, Nikolaos
    Karagiorgou, Sofia
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2012, 28 (03): : 593 - 604
  • [19] Voulodimos A., 2020, medRxiv
  • [20] Building Extraction from Satellite Images Using Mask R-CNN with Building Boundary Regularization
    Zha, Kang
    Kang, Jungwon
    Jung, Jaewook
    Sohn, Gunho
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 242 - 246