Building Extraction from RGB Satellite Images using Deep Learning: A U-Net Approach

被引:4
作者
Temenos, Anastasios [1 ]
Protopapadakis, Eftychios [1 ]
Doulamis, Anastasios [1 ]
Temenos, Nikos [1 ]
机构
[1] Natl Tech Univ Athens, Athens, Greece
来源
THE 14TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2021 | 2021年
关键词
Automatic Building Extraction; Remote Sensing; SpaceNet; 1; Deep Learning; CNN Building Extraction; U-Net; Semantic Segmentation;
D O I
10.1145/3453892.3461320
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic building extraction from satellite RGB images, is a low-cost alternative to perform important urban planning tasks. Yet, it is a challenging one, especially when natural and non-city block objects interfere in the semantic segmentation of algorithms that extract their key features. In this work we approach the automatic building extraction using a Convolution Neural Network based on the U-Net architecture. In contrast to existing approaches, it successfully encodes important features and decodes the buildings' localization by requiring both reduced computational time and dataset size. We evaluate the U-Net's performance using RGB images selected from the SpaceNet 1 dataset and the experimental results show an accuracy in building localization of 92.3%. Finally, favorable comparison with existing CNN approaches to hyper-spectral images targeting the SpaceNet 1 dataset, demonstrated its effectiveness.
引用
收藏
页码:391 / 395
页数:5
相关论文
共 20 条
  • [1] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [2] Advances in Spectral-Spatial Classification of Hyperspectral Images
    Fauvel, Mathieu
    Tarabalka, Yuliya
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Tilton, James C.
    [J]. PROCEEDINGS OF THE IEEE, 2013, 101 (03) : 652 - 675
  • [3] A New European Settlement Map From Optical Remotely Sensed Data
    Florczyk, Aneta Jadwiga
    Ferri, Stefano
    Syrris, Vasileios
    Kemper, Thomas
    Halkia, Matina
    Soille, Pierre
    Pesaresi, Martino
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (05) : 1978 - 1992
  • [4] He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
  • [5] Evaluation of Automatic Building Detection Approaches Combining High Resolution Images and LiDAR Data
    Hermosilla, Txomin
    Ruiz, Luis A.
    Recio, Jorge A.
    Estornell, Javier
    [J]. REMOTE SENSING, 2011, 3 (06) : 1188 - 1210
  • [6] Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network
    Huang, Jianfeng
    Zhang, Xinchang
    Xin, Qinchuan
    Sun, Ying
    Zhang, Pengcheng
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 151 : 91 - 105
  • [7] Karantzalos K, 2015, GEOTECH ENVIRON, V13, P237, DOI 10.1007/978-3-319-11469-9_10
  • [8] Katsamenis Iason, 2020, Advances in Visual Computing. 15th International Symposium, ISVC 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12509), P160, DOI 10.1007/978-3-030-64556-4_13
  • [9] Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
  • [10] Deep convolutional neural networks for building extraction from orthoimages and dense image matching point clouds
    Maltezos, Evangelos
    Doulamis, Nikolaos
    Doulamis, Anastasios
    Ioannidis, Charalabos
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2017, 11