Central Automorphisms and Inner Automorphisms in Finitely Generated Groups

被引:1
作者
Azhdari, Zahedeh [1 ]
机构
[1] Alzahra Univ, Dept Math, Tehran 19834, Iran
关键词
Central automorphism; Finitely generated group; Inner automorphism;
D O I
10.1080/00927872.2015.1033715
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group and Aut(c)(G) be the group of all central automorphisms of G. We know that in a finite p-group G, Aut(c)(G)=Inn(G) if and only if Z(G)=G and Z(G) is cyclic. But we shown that we cannot extend this result for infinite groups. In fact, there exist finitely generated nilpotent groups of class 2 in which G =Z(G) is infinite cyclic and Inn(G)<C*=Aut(c)(G). In this article, we characterize all finitely generated groups G for which the equality Aut(c)(G)=Inn(G) holds.
引用
收藏
页码:4133 / 4139
页数:7
相关论文
共 10 条
[1]   AUTOMORPHISMS OF A P-GROUP [J].
ADNEY, JE ;
YEN, T .
ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (01) :137-&
[2]   On central automorphisms that fix the centre elementwise [J].
Attar, Mehdi Shabani .
ARCHIV DER MATHEMATIK, 2007, 89 (04) :296-297
[3]  
Azhdari Z, 2013, SOUTHEAST ASIAN BULL, V37, P15
[4]   On inner automorphisms and certain central automorphisms of groups [J].
Azhdari, Zahedeh ;
Akhavan-Malayeri, Mehri .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (03) :377-393
[5]   ON AUTOMORPHISMS FIXING CERTAIN GROUPS [J].
Azhdari, Zahedeh ;
Akhavan-Malayeri, Mehri .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (02)
[6]   ON INNER AUTOMORPHISMS AND CENTRAL AUTOMORPHISMS OF NILPOTENT GROUP OF CLASS 2 [J].
Azhdari, Zahedeh ;
Akhavan-Malayeri, Mehri .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (06) :1283-1290
[7]  
Curran M. J., 2004, MATH P R IR ACAD A, V104A, P223
[8]   Central automorphisms that are almost inner [J].
Curran, MJ ;
McCaughan, DJ .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (05) :2081-2087
[9]  
Jafari SH, 2011, INT ELECTRON J ALGEB, V9, P167
[10]   ON CENTRAL AUTOMORPHISMS FIXING THE CENTER ELEMENT-WISE [J].
Yadav, Manoj K. .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (12) :4325-4331