A Kinetic Flocking Model with Diffusion

被引:120
作者
Duan, Renjun [1 ]
Fornasier, Massimo [2 ]
Toscani, Giuseppe [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[3] Univ Pavia, Dept Math, I-27100 Pavia, Italy
基金
奥地利科学基金会;
关键词
SELF-DRIVEN PARTICLES; BOLTZMANN-EQUATION; CONTINUUM-LIMIT; EQUILIBRIUM; DYNAMICS; SYSTEM; CONVERGENCE; BEHAVIOR; MOTION; TORUS;
D O I
10.1007/s00220-010-1110-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the stability of the equilibrium states and the rate of convergence of solutions towards them for the continuous kinetic version of the Cucker-Smale flocking in presence of diffusion whose strength depends on the density. This kinetic equation describes the collective behavior of an ensemble of organisms, animals or devices which are forced to adapt their velocities according to a certain rule implying a final configuration in which the ensemble flies at the mean velocity of the initial configuration. Our analysis takes advantage both from the fact that the global equilibrium is a Maxwellian distribution function, and, on the contrary to what happens in the Cucker-Smale model (IEEE Trans Autom Control 52:852-862, 2007), the interaction potential is an integrable function. Precise conditions which guarantee polynomial rates of convergence towards the global equilibrium are found.
引用
收藏
页码:95 / 145
页数:51
相关论文
共 29 条
[1]   On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations [J].
Arnold, A ;
Markowich, P ;
Toscani, G ;
Unterreiter, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :43-100
[2]   ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL [J].
Carrillo, J. A. ;
Fornasier, M. ;
Rosado, J. ;
Toscani, G. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :218-236
[3]   State transitions and the continuum limit for a 2D interacting, self-propelled particle system [J].
Chuang, Yao-Li ;
D'Orsogna, Maria R. ;
Marthaler, Daniel ;
Bertozzi, Andrea L. ;
Chayes, Lincoln S. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 232 (01) :33-47
[4]   Emergent behavior in flocks [J].
Cucker, Felipe ;
Smale, Steve .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (05) :852-862
[5]   Continuum limit of self-driven particles with orientation interaction [J].
Degond, Pierre ;
Motsch, Sebastien .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (SUPPL.) :1193-1215
[6]   Large scale dynamics of the Persistent Turning Walker model of fish behavior [J].
Degond, Pierre ;
Motsch, Sebastien .
JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (06) :989-1021
[7]  
Desvillettes L, 2001, COMMUN PUR APPL MATH, V54, P1, DOI 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO
[8]  
2-Q
[9]   Hypocoercivity for kinetic equations with linear relaxation terms [J].
Dolbeault, Jean ;
Mouhot, Clement ;
Schmeiser, Christian .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) :511-516
[10]  
Duan R, 2007, J DIFF EQS, V244, P3204