Dimensions of self-affine fractals and multifractals generated by upper-triangular matrices

被引:37
作者
Falconer, Kenneth [1 ]
Miao, Jun [1 ]
机构
[1] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
关键词
fractals; multifractals; self-affine;
D O I
10.1142/S0218348X07003587
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider calculation of the dimensions of self-affine fractals and multifractals that are the attractors of iterated function systems specified in terms of upper-triangular matrices. Using methods from linear algebra, we obtain explicit formulae for the dimensions that are valid in many
引用
收藏
页码:289 / 299
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 2003, FRACTAL GEOMETRY, DOI DOI 10.1002/0470013850
[2]  
Barros M.P., 1995, BIOCIENCIAS, V3, P239
[3]  
EDALAT A, 1998, ELECT NOTES THEOR CO, V13
[4]   Generalized dimensions of measures on self-affine sets [J].
Falconer, KJ .
NONLINEARITY, 1999, 12 (04) :877-891
[5]   Fractal properties of generalized Sierpinski triangles [J].
Falconer, KJ ;
Lammering, B .
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1998, 6 (01) :31-41
[6]  
HEUTER I, 1995, ERGOD THEOR DYN, V15, P77
[7]   HAUSDORFF AND BOX DIMENSIONS OF CERTAIN SELF AFFINE FRACTALS [J].
LALLEY, SP ;
GATZOURAS, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (02) :533-568
[8]  
Lancaster P., 1969, THEORY MATRICES
[9]   THE HAUSDORFF DIMENSION OF GENERAL SIERPINSKI CARPETS [J].
MCMULLEN, C .
NAGOYA MATHEMATICAL JOURNAL, 1984, 96 (DEC) :1-9
[10]  
Northcott D. G., 1984, MULTILINEAR ALGEBRA