Linearizability of the perturbed Burgers equation

被引:19
作者
Kraenkel, RA [1 ]
Pereira, JG [1 ]
Neto, ECD [1 ]
机构
[1] Univ Estadual Paulista, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil
关键词
D O I
10.1103/PhysRevE.58.2526
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show in this report that the perturbed Burgers equation u(t)=2uu(x) + u(xx)+ epsilon(3 alpha(1)u(2)u(x) + 3 alpha(2)uu(xx) + 3 alpha(3)u(x)(2) + alpha(4)u(xxx)) is equivalent, through a near-identity transformation and up to O(epsilon), to a linearizable equation if the condition 3 alpha(1)-3 alpha(3)-3/2 alpha(2)+3/2 alpha(4)=0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.
引用
收藏
页码:2526 / 2530
页数:5
相关论文
共 12 条
[1]  
ARNOLD VI, 1983, GEOMETRICAL METHODS
[2]  
CALOGERO F, 1991, WHAT INTEGRABILITY
[3]   POLE EXPANSIONS OF NONLINEAR PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHOODNOVSKY, DV ;
CHOODNOVSKY, GV .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 40 (02) :339-353
[4]  
Dodd R. K., 1982, Solitons and nonlinear wave equations
[5]  
FOKAS T, 1996, CONT MATH, V200, P85
[6]  
Kevorkian J. K., 1996, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-3968-0
[7]   NORMAL FORMS FOR WEAKLY DISPERSIVE WAVE-EQUATIONS [J].
KODAMA, Y .
PHYSICS LETTERS A, 1985, 112 (05) :193-196
[8]   HIGHER-ORDER APPROXIMATION IN THE REDUCTIVE PERTURBATION METHOD .3. WEAKLY DISSIPATIVE SYSTEM [J].
KODAMA, Y ;
TANIUTI, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1979, 47 (05) :1706-1716
[9]  
KODAMA Y, 1996, OBSTACLES ASYMPTOTIC
[10]   SURFACE PERTURBATIONS OF A SHALLOW VISCOUS-FLUID HEATED FROM BELOW AND THE (2+1)-DIMENSIONAL BURGERS-EQUATION [J].
KRAENKEL, RA ;
PEREIRA, JG ;
MANNA, MA .
PHYSICAL REVIEW A, 1992, 45 (02) :838-841