EXISTENCE AND NONEXISTENCE OF SOLUTIONS OF ASYMPTOTICALLY LINEAR KLEIN-GORDON EQUATION

被引:0
作者
Carriao, Paulo C. [1 ]
Lehrer, Raquel [2 ]
Vicente, Andre [2 ]
机构
[1] Univ Fed Minas Gerais, ICEX, Math, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Estadual Oeste Do Parana, CCET, Rua Univ 2069,Jd Univ, BR-85819110 Cascavel, PR, Brazil
关键词
Klein-Gordon equation; blow up of solution; asymptotically linear; Pohozaev manifold; WAVE-EQUATION; STANDING WAVES; BLOW-UP; INSTABILITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study a nonlinear Klein-Gordon equation when the nonlinear term asymptotically linear at infinity. We used the Pohozaev manifold to separate a subspace of H-1(R-N) on a global existence region and on a blow up region.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Blow-up solutions of damped Klein-Gordon equation on the Heisenberg group
    Ruzhansky, Michael
    Sabitbek, Bolys
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (03)
  • [32] Global nonexistence of solution for a nonlinear Klein-Gordon equation with strong damping, distributed delay and source terms
    Yazid, Fares
    Ouchenane, Djamel
    Djeradi, Fatima Siham
    Guefaifia, Rafik
    AFRIKA MATEMATIKA, 2023, 34 (04)
  • [33] GLOBAL BEHAVIOR OF THE SOLUTIONS TO NONLINEAR KLEIN-GORDON EQUATION WITH CRITICAL INITIAL ENERGY
    Dimova, Milena
    Kolkovska, Natalia
    Kutev, Nikolai
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 671 - 689
  • [34] GLOBAL SOLUTIONS AND FINITE TIME BLOW UP FOR DAMPED KLEIN-GORDON EQUATION
    徐润章
    丁云华
    Acta Mathematica Scientia, 2013, 33 (03) : 643 - 652
  • [35] Variational aspects of the Klein-Gordon equation
    Datta, S. N.
    Ghosh, A.
    Chakraborty, R.
    INDIAN JOURNAL OF PHYSICS, 2015, 89 (02) : 181 - 187
  • [36] The Klein-Gordon Equation in Machian Model
    Liu, Bin
    Dai, Yun-Chuan
    Hu, Xian-Ru
    Deng, Jian-Bo
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (11) : 3544 - 3551
  • [37] METHOD OF REFLECTIONS FOR THE KLEIN-GORDON EQUATION
    Korzyuk, Academician Viktor I.
    V. Rudzko, Jan
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2022, 66 (03): : 263 - 268
  • [38] Solitons for the Nonlinear Klein-Gordon Equation
    Bellazzini, J.
    Benci, V.
    Bonanno, C.
    Micheletti, A. M.
    ADVANCED NONLINEAR STUDIES, 2010, 10 (02) : 481 - 499
  • [39] On the Numerical Solution of the Klein-Gordon Equation
    Bratsos, A. G.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 939 - 951
  • [40] A Symmetrical Interpretation of the Klein-Gordon Equation
    Michael B. Heaney
    Foundations of Physics, 2013, 43 : 733 - 746