Integrating Airborne LiDAR and Terrestrial Laser Scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia

被引:61
作者
Bazezew, Muluken N. [1 ]
Hussin, Yousif A. [2 ]
Kloosterman, E. H. [2 ]
机构
[1] Dilla Univ, Coll Agr & Nat Resources, Dept Nat Resources, SNNPE, POB 419, Dilla, Ethiopia
[2] Univ Twente, Fac Geoinformat Sci & Earth Observat FTC, Dept Nat Resources, NL-7500 AE Enschede, Netherlands
关键词
ALS; CHM; Lower canopy; Multiresolution segmentation; TLS; Upper canopy; DIFFERENT DEGRADATION LEVELS; TREE HEIGHT; SMALL-FOOTPRINT; RAIN-FOREST; SEGMENTATION; MODELS;
D O I
10.1016/j.jag.2018.07.026
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Parameters of individual trees can be measured from LiDAR data provided that the laser points are dense enough to distinguish tree crowns. Retrieving tree parameters for above-ground biomass (AGB) valuation of the complex biophysical tropical forests using LiDAR technology is a major undertaking, and yet needs vital effort. Integration of Airborne LiDAR Scanner (ALS) and Terrestrial Laser Scanner (TLS) data for estimation of tree AGB at a single-tree level has been investigated in part of the tropical forest of Malaysia. According to the complete tree-crown detection potential of ALS and TLS, the forest canopy was cross-sectioned into upper and lower canopy layers. In a first step, multiresolution segmentation of the ALS canopy height model (CHM) was deployed to delineate upper canopy tree crowns. Results showed a 73% segmentation accuracy and permissible to detect 57% of field-measured trees. Two-way tree height validations were executed, viz. ALS-based upper and TLS based lower canopy tree heights. The root mean square error (RMSE) for upper canopy trees height was 3.24 m (20.18%), and the bias was -1.20 m (-7.45%). For lower canopy trees height, RMSE of 1.45 m (14.77%) and bias of 0.42 m (4.29%) were obtained. In a second step, diameter at breast height (DBH) of individual tree stems detected from TLS data was measured. The RMSE obtained was 1.30 cm (6.52%), which was as nearly accurate as manually measured-DBH. In a third step, ALS-detected trees were co-registered and linked with the corresponding tree stems detected by TLS for DBH use. Lastly, an empirical regression model was developed for AGB estimated from a field-based method using an independent variable derived from ALS and TLS data. The result suggests that traditional field-methods underestimate AGB or carbon with the bias -0.289 (-3.53%) Mg, according for approximately 11%. Conversely, integrative use of ALS and TLS can enhance the capability of estimating more accurately AGB or carbon stock of the tropical forests.
引用
收藏
页码:638 / 652
页数:15
相关论文
共 53 条
[1]  
Aalde N. H. R. H., 2006, AGR FOR OTH LAND US, V4, P15
[2]   A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods [J].
Andersen, Hans-Erik ;
Reutebuch, Stephen E. ;
McGaughey, Robert J. .
CANADIAN JOURNAL OF REMOTE SENSING, 2006, 32 (05) :355-366
[3]   A universal airborne LiDAR approach for tropical forest carbon mapping [J].
Asner, Gregory P. ;
Mascaro, Joseph ;
Muller-Landau, Helene C. ;
Vieilledent, Ghislain ;
Vaudry, Romuald ;
Rasamoelina, Maminiaina ;
Hall, Jefferson S. ;
van Breugel, Michiel .
OECOLOGIA, 2012, 168 (04) :1147-1160
[4]  
Bienert A., 2006, REMOTE SENS SPAT INF, V36, P1
[5]   Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America [J].
Brandtberg, T ;
Warner, TA ;
Landenberger, RE ;
McGraw, JB .
REMOTE SENSING OF ENVIRONMENT, 2003, 85 (03) :290-303
[6]   Nondestructive estimates of above-ground biomass using terrestrial laser scanning [J].
Calders, Kim ;
Newnham, Glenn ;
Burt, Andrew ;
Murphy, Simon ;
Raumonen, Pasi ;
Herold, Martin ;
Culvenor, Darius ;
Avitabile, Valerio ;
Disney, Mathias ;
Armston, John ;
Kaasalainen, Mikko .
METHODS IN ECOLOGY AND EVOLUTION, 2015, 6 (02) :198-208
[7]   Assessment of very high spatial resolution satellite image segmentations [J].
Carleer, AP ;
Debeir, O ;
Wolff, E .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2005, 71 (11) :1285-1294
[8]   Improved allometric models to estimate the aboveground biomass of tropical trees [J].
Chave, Jerome ;
Rejou-Mechain, Maxime ;
Burquez, Alberto ;
Chidumayo, Emmanuel ;
Colgan, Matthew S. ;
Delitti, Welington B. C. ;
Duque, Alvaro ;
Eid, Tron ;
Fearnside, Philip M. ;
Goodman, Rosa C. ;
Henry, Matieu ;
Martinez-Yrizar, Angelina ;
Mugasha, Wilson A. ;
Muller-Landau, Helene C. ;
Mencuccini, Maurizio ;
Nelson, Bruce W. ;
Ngomanda, Alfred ;
Nogueira, Euler M. ;
Ortiz-Malavassi, Edgar ;
Pelissier, Raphael ;
Ploton, Pierre ;
Ryan, Casey M. ;
Saldarriaga, Juan G. ;
Vieilledent, Ghislain .
GLOBAL CHANGE BIOLOGY, 2014, 20 (10) :3177-3190
[9]   Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape [J].
Clark, ML ;
Clark, DB ;
Roberts, DA .
REMOTE SENSING OF ENVIRONMENT, 2004, 91 (01) :68-89
[10]   Fusion of LiDAR and imagery for estimating forest canopy fuels [J].
Erdody, Todd L. ;
Moskal, L. Monika .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (04) :725-737