Structure prediction in temporal networks using frequent subgraphs

被引:32
作者
Lahiri, Mayank [1 ]
Berger-Wolf, Tanya Y. [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
来源
2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2 | 2007年
关键词
D O I
10.1109/CIDM.2007.368850
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are several types of processes which can be modeled explicitly by recording the interactions between a set of actors over time. In such applications, a common objective is, given a series of observations, to predict exactly when certain interactions will occur in the future. We propose a representation for this type of temporal data and a generic, streaming, adaptive algorithm to predict the pattern of interactions at any arbitrary point in the future. We test our algorithm on predicting patterns in e-mail logs, correlations between stock closing prices, and social grouping in herds of Plains zebras. Our algorithm averages over 85% accuracy in predicting a set of interactions at any unseen timestep. To the best of our knowledge, this is the first algorithm that predicts interactions at the finest possible time grain.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 51 条
[11]   MAFIA: A maximal frequent itemset algorithm for transactional databases [J].
Burdick, D ;
Calimlim, M ;
Gehrke, J .
17TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2001, :443-452
[13]  
DESIKAN P, 2004, MINING TEMPORALLY EV, P13
[14]   Modelling disease outbreaks in realistic urban social networks [J].
Eubank, S ;
Guclu, H ;
Kumar, VSA ;
Marathe, MV ;
Srinivasan, A ;
Toroczkai, Z ;
Wang, N .
NATURE, 2004, 429 (6988) :180-184
[15]  
Eubank S., 2004, P 15 ANN ACM SIAM S, P718
[16]  
FISCHHOFF IR, IN PRESS ANIMAL BEHA
[17]  
Getoor L., 2005, SIGKDD EXPLORATIONS, V7, P3, DOI [DOI 10.1145/1117454.1117456, 10.1145/1117454.1117456]
[18]  
GRUHL D, P WWW 04, P491
[19]  
HUAN J, 2004, P 10 ACM SIGKDD INT, P581
[20]   The effects of local spatial structure on epidemiological invasions [J].
Keeling, MJ .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1999, 266 (1421) :859-867