Lead Acetate Assisted Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells

被引:18
|
作者
Zhang, Yuanyuan [1 ,2 ]
Ma, Yongchao [1 ,2 ]
Shin, Insoo [1 ,2 ]
Jung, Yun Kyung [3 ]
Lee, Bo Ram [2 ]
Wu, Sangwook [1 ,2 ]
Jeong, Jung Hyun [2 ]
Lee, Byoung Hoon [4 ]
Kim, Joo Hyun [5 ]
Kim, Kwang Ho [1 ]
Park, Sung Heum [1 ,2 ]
机构
[1] Pusan Natl Univ, Hybrid Interface Mat Global Frontier Res Grp, Busan 608737, South Korea
[2] Pukyong Natl Univ, Dept Phys, Busan 48513, South Korea
[3] Inje Univ, Dept Biomed Engn, Gimhae 50834, South Korea
[4] Ewha Womans Univ, Div Chem Engn & Mat Sci, Seoul 03760, South Korea
[5] Pukyong Natl Univ, Dept Polymer Engn, Busan 608739, South Korea
基金
新加坡国家研究基金会;
关键词
Pb(OAc)(2); top and bottom ways; high efficiency; long-term stability; perovskite solar cells; PERFORMANCE; PEDOTPSS; STABILITY; LAYER; FILMS;
D O I
10.1021/acsami.9b19691
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High power conversion efficiency (PCE) and long-term stability are inevitable issues faced in practical device applications of perovskite solar cells. In this paper, significant enhancements in the device efficiency and stability are achieved by using a surface-active lead acetate (Pb(OAc)(2)) at the top or bottom of CH3NH3PbI3 (MAPbI(3))-based perovskite. When a saturated Pb(OAc)(2) solution is introduced on the top of the MAPbI(3) perovskite precursor, the OAc- in Pb(OAc)(2) participates in lattice restructuring of MAPbI(3) to form MAPbI(3-x)(OAc)(x), thereby producing a high-quality perovskite film with high crystallinity, large grain sizes, and uniform and pinhole-free morphology. Moreover, when Pb(OAc)(2) solution is mixed in the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) solution in the bottom way, the OAC(-) in Pb(OAc)(2) improves the water resistance of PEDOT-PSS. As the OAc- easily bonds with the Pb2+, the deposition of MAPbI(3) precursor onto the Pb(OAc)(2) mixed with PEDOT-PSS results in a reduction of the uncoordinated Pb, leading to strong stabilization of the perovskite layer. Both the top- and bottom-treated devices exhibit enhanced PCE values of 18.93% and 18.28%, respectively, compared to the conventional device with a PCE of 16.47%, which originates from decreased trap sites and reduced energy barriers. In particular, the bottom-treated device exhibits long-term stability, with more than 84% of its initial PCE over 800 h in an ambient environment.
引用
收藏
页码:7186 / 7197
页数:12
相关论文
共 50 条
  • [31] Lead acetate as a superior lead source enables highly efficient and stable all-inorganic lead-tin perovskite solar cells
    Shang, Yanbo
    Li, Xingcheng
    Lian, Weitao
    Jiang, Xiaofen
    Wang, Xue
    Chen, Tao
    Xiao, Zhengguo
    Wang, Mingtai
    Lu, Yalin
    Yang, Shangfeng
    CHEMICAL ENGINEERING JOURNAL, 2023, 457
  • [32] Universal buried interface modification with lead iodide for efficient and stable perovskite solar cells
    Nguyen, Dang-Thuan
    Bui, Anh Dinh
    Walter, Daniel
    Nguyen, Khoa
    Zhan, Hualin
    Ta, Xuan Minh Chau
    Tabi, Grace Dansoa
    Tran-Phu, Thanh
    Chang, Li-Chun
    Huang, Keqing
    Truong, Minh Anh
    Wakamiya, Atsushi
    Adhikari, Sunita Gautam
    Nguyen, Hieu
    Haggren, Anne
    Ahmad, Viqar
    Duong, Thanh-Tung
    Cuong, Nguyen Duy
    Shen, Heping
    Catchpole, Kylie
    Weber, Klaus
    White, Thomas
    Duong, The
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [33] Buried Interface Engineering Enables Efficient, Scalable, and Stable Inverted Perovskite Solar Cells
    Wang, Luqi
    Wang, Chao
    Li, Jing
    Geng, Cong
    Mo, Yanping
    Li, Hanxiao
    Bu, Tongle
    Tong, Jinhui
    Cheng, Yi-Bing
    Huang, Fuzhi
    SOLAR RRL, 2023, 7 (12)
  • [34] Bilateral Interface Engineering for Efficient and Stable Perovskite Solar Cells Using Phenylethylammonium Iodide
    Zhang, Yuanyuan
    Jang, Soyeong
    Hwang, In-Wook
    Jung, Yun Kyung
    Lee, Bo Ram
    Kim, Joo Hyun
    Kim, Kwang Ho
    Park, Sung Heum
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) : 24827 - 24836
  • [35] Synergistic Effect of RbBr Interface Modification on Highly Efficient and Stable Perovskite Solar Cells
    Li, Dan
    Li, Yong
    Liu, Lidan
    Liu, Zhike
    Yuan, Ningyi
    Ding, Jianning
    Wang, Dapeng
    Liu, Shengzhong Frank
    ACS OMEGA, 2021, 6 (21): : 13766 - 13773
  • [36] Chemical Design of Organic Interface Modifiers for Highly Efficient and Stable Perovskite Solar Cells
    Kim, Seul-Gi
    Zhu, Kai
    ADVANCED ENERGY MATERIALS, 2023, 13 (25)
  • [37] Precursor engineering for efficient and stable perovskite solar cells
    Luan, Fuyuan
    Li, Haiyan
    Gong, Shuiping
    Chen, Xinyu
    Shou, Chunhui
    Wu, Zihua
    Xie, Huaqing
    Yang, Songwang
    NANOTECHNOLOGY, 2023, 34 (05)
  • [38] Facet Engineering for Stable, Efficient Perovskite Solar Cells
    Ma, Chunqing
    Gratzel, Michael
    Park, Nam-Gyu
    ACS ENERGY LETTERS, 2022, 7 (09) : 3120 - 3128
  • [39] Additive Engineering for Efficient and Stable Perovskite Solar Cells
    Zhang, Fei
    Zhu, Kai
    ADVANCED ENERGY MATERIALS, 2020, 10 (13)
  • [40] The Rise of Highly Efficient and Stable Perovskite Solar Cells
    Graetzel, Michael
    ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (03) : 487 - 491