Lead Acetate Assisted Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells

被引:18
|
作者
Zhang, Yuanyuan [1 ,2 ]
Ma, Yongchao [1 ,2 ]
Shin, Insoo [1 ,2 ]
Jung, Yun Kyung [3 ]
Lee, Bo Ram [2 ]
Wu, Sangwook [1 ,2 ]
Jeong, Jung Hyun [2 ]
Lee, Byoung Hoon [4 ]
Kim, Joo Hyun [5 ]
Kim, Kwang Ho [1 ]
Park, Sung Heum [1 ,2 ]
机构
[1] Pusan Natl Univ, Hybrid Interface Mat Global Frontier Res Grp, Busan 608737, South Korea
[2] Pukyong Natl Univ, Dept Phys, Busan 48513, South Korea
[3] Inje Univ, Dept Biomed Engn, Gimhae 50834, South Korea
[4] Ewha Womans Univ, Div Chem Engn & Mat Sci, Seoul 03760, South Korea
[5] Pukyong Natl Univ, Dept Polymer Engn, Busan 608739, South Korea
基金
新加坡国家研究基金会;
关键词
Pb(OAc)(2); top and bottom ways; high efficiency; long-term stability; perovskite solar cells; PERFORMANCE; PEDOTPSS; STABILITY; LAYER; FILMS;
D O I
10.1021/acsami.9b19691
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High power conversion efficiency (PCE) and long-term stability are inevitable issues faced in practical device applications of perovskite solar cells. In this paper, significant enhancements in the device efficiency and stability are achieved by using a surface-active lead acetate (Pb(OAc)(2)) at the top or bottom of CH3NH3PbI3 (MAPbI(3))-based perovskite. When a saturated Pb(OAc)(2) solution is introduced on the top of the MAPbI(3) perovskite precursor, the OAc- in Pb(OAc)(2) participates in lattice restructuring of MAPbI(3) to form MAPbI(3-x)(OAc)(x), thereby producing a high-quality perovskite film with high crystallinity, large grain sizes, and uniform and pinhole-free morphology. Moreover, when Pb(OAc)(2) solution is mixed in the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) solution in the bottom way, the OAC(-) in Pb(OAc)(2) improves the water resistance of PEDOT-PSS. As the OAc- easily bonds with the Pb2+, the deposition of MAPbI(3) precursor onto the Pb(OAc)(2) mixed with PEDOT-PSS results in a reduction of the uncoordinated Pb, leading to strong stabilization of the perovskite layer. Both the top- and bottom-treated devices exhibit enhanced PCE values of 18.93% and 18.28%, respectively, compared to the conventional device with a PCE of 16.47%, which originates from decreased trap sites and reduced energy barriers. In particular, the bottom-treated device exhibits long-term stability, with more than 84% of its initial PCE over 800 h in an ambient environment.
引用
收藏
页码:7186 / 7197
页数:12
相关论文
共 50 条
  • [21] Efficient and stable perovskite solar cells by interface engineering at the interface of electron transport layer/perovskite
    Kumar, Anjan
    Singh, Sangeeta
    Sharma, Amit
    Ahmed, Emad M.
    OPTICAL MATERIALS, 2022, 132
  • [22] Contact Engineering: Electrode Materials for Highly Efficient and Stable Perovskite Solar Cells
    Xiao, Jia-Wen
    Shi, Congbo
    Zhou, Chenxiao
    Zhang, Deliang
    Li, Yujing
    Chen, Qi
    SOLAR RRL, 2017, 1 (09):
  • [23] In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells
    Wang, Gaoxiang
    Wang, Lipeng
    Qiu, Jianhang
    Yan, Zheng
    Li, Changji
    Dai, Chunli
    Zhen, Chao
    Tai, Kaiping
    Yu, Wei
    Jiang, Xin
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 7690 - 7700
  • [24] Universal buried interface modification with lead iodide for efficient and stable perovskite solar cells
    Nguyen, Dang-Thuan
    Bui, Anh Dinh
    Walter, Daniel
    Nguyen, Khoa
    Zhan, Hualin
    Ta, Xuan Minh Chau
    Tabi, Grace Dansoa
    Tran-Phu, Thanh
    Chang, Li-Chun
    Huang, Keqing
    Truong, Minh Anh
    Wakamiya, Atsushi
    Adhikari, Sunita Gautam
    Nguyen, Hieu
    Haggren, Anne
    Ahmad, Viqar
    Duong, Thanh-Tung
    Cuong, Nguyen Duy
    Shen, Heping
    Catchpole, Kylie
    Weber, Klaus
    White, Thomas
    Duong, The
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [25] Constructing Efficient and Stable Perovskite Solar Cells via Interconnecting Perovskite Grains
    Hou, Xian
    Huang, Sumei
    Wei Ou-Yang
    Pan, Likun
    Sun, Zhuo
    Chen, Xiaohong
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (40) : 35200 - 35208
  • [26] Regulating perovskite/PCBM interface for highly efficient and stable inverted perovskite solar cells
    Gu, Wei-Min
    Zhao, Mingming
    Wang, Qing
    Gong, Kun
    Li, Xuli
    Sun, Yan
    Sun, Shaojing
    Yang, Guang
    Hu, Chunming
    Jiang, Ke-Jian
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [27] Additive Engineering for Efficient and Stable Perovskite Solar Cells
    Zhang, Fei
    Zhu, Kai
    ADVANCED ENERGY MATERIALS, 2020, 10 (13)
  • [28] PhDMADBr assisted additive or interface engineering for efficient and stable perovskite solar cells fabricated in ambient air
    Zhang, Xiuzhen
    Wang, Xiyu
    Yin, You
    Zhang, Yuanyuan
    Liu, Lili
    Li, Qile
    Duan, Liangsheng
    Ban, Xinxin
    Shi, Linxing
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [29] Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells
    Bai, Yang
    Meng, Xiangyue
    Yang, Shihe
    ADVANCED ENERGY MATERIALS, 2018, 8 (05)
  • [30] Fabrication of Highly Efficient and Stable Hole-Transport Material-Free Perovskite Solar Cells through Morphology and Interface Engineering: Full Ambient Process
    Ke, Kai
    Kondamareddy, Kiran Kumar
    Gao, Fan
    Zhang, Xiang
    Yuan, Xiao
    ENERGY TECHNOLOGY, 2019, 7 (10)