Lead Acetate Assisted Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells

被引:18
|
作者
Zhang, Yuanyuan [1 ,2 ]
Ma, Yongchao [1 ,2 ]
Shin, Insoo [1 ,2 ]
Jung, Yun Kyung [3 ]
Lee, Bo Ram [2 ]
Wu, Sangwook [1 ,2 ]
Jeong, Jung Hyun [2 ]
Lee, Byoung Hoon [4 ]
Kim, Joo Hyun [5 ]
Kim, Kwang Ho [1 ]
Park, Sung Heum [1 ,2 ]
机构
[1] Pusan Natl Univ, Hybrid Interface Mat Global Frontier Res Grp, Busan 608737, South Korea
[2] Pukyong Natl Univ, Dept Phys, Busan 48513, South Korea
[3] Inje Univ, Dept Biomed Engn, Gimhae 50834, South Korea
[4] Ewha Womans Univ, Div Chem Engn & Mat Sci, Seoul 03760, South Korea
[5] Pukyong Natl Univ, Dept Polymer Engn, Busan 608739, South Korea
基金
新加坡国家研究基金会;
关键词
Pb(OAc)(2); top and bottom ways; high efficiency; long-term stability; perovskite solar cells; PERFORMANCE; PEDOTPSS; STABILITY; LAYER; FILMS;
D O I
10.1021/acsami.9b19691
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High power conversion efficiency (PCE) and long-term stability are inevitable issues faced in practical device applications of perovskite solar cells. In this paper, significant enhancements in the device efficiency and stability are achieved by using a surface-active lead acetate (Pb(OAc)(2)) at the top or bottom of CH3NH3PbI3 (MAPbI(3))-based perovskite. When a saturated Pb(OAc)(2) solution is introduced on the top of the MAPbI(3) perovskite precursor, the OAc- in Pb(OAc)(2) participates in lattice restructuring of MAPbI(3) to form MAPbI(3-x)(OAc)(x), thereby producing a high-quality perovskite film with high crystallinity, large grain sizes, and uniform and pinhole-free morphology. Moreover, when Pb(OAc)(2) solution is mixed in the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) solution in the bottom way, the OAC(-) in Pb(OAc)(2) improves the water resistance of PEDOT-PSS. As the OAc- easily bonds with the Pb2+, the deposition of MAPbI(3) precursor onto the Pb(OAc)(2) mixed with PEDOT-PSS results in a reduction of the uncoordinated Pb, leading to strong stabilization of the perovskite layer. Both the top- and bottom-treated devices exhibit enhanced PCE values of 18.93% and 18.28%, respectively, compared to the conventional device with a PCE of 16.47%, which originates from decreased trap sites and reduced energy barriers. In particular, the bottom-treated device exhibits long-term stability, with more than 84% of its initial PCE over 800 h in an ambient environment.
引用
收藏
页码:7186 / 7197
页数:12
相关论文
共 50 条
  • [1] Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhao, Chenxu
    Zhang, Hong
    Krishna, Anurag
    Xu, Jia
    Yao, Jianxi
    ADVANCED OPTICAL MATERIALS, 2024, 12 (07)
  • [2] Interface engineering of highly efficient perovskite solar cells
    Zhou, Huanping
    Chen, Qi
    Li, Gang
    Luo, Song
    Song, Tze-bing
    Duan, Hsin-Sheng
    Hong, Ziruo
    You, Jingbi
    Liu, Yongsheng
    Yang, Yang
    SCIENCE, 2014, 345 (6196) : 542 - 546
  • [3] Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Li, Yahong
    Xie, Haibing
    Lim, Eng Liang
    Hagfeldt, Anders
    Bi, Dongqin
    ADVANCED ENERGY MATERIALS, 2022, 12 (05)
  • [4] Interface engineering with NiO nanocrystals for highly efficient and stable planar perovskite solar cells
    Zhang, Weina
    Zhang, Xuezhen
    Wu, Tongyue
    Sun, Weihai
    Wu, Jihuai
    Lan, Zhang
    ELECTROCHIMICA ACTA, 2019, 293 : 211 - 219
  • [5] Additive engineering for highly efficient and stable perovskite solar cells
    Lee, Do-Kyoung
    Park, Nam-Gyu
    APPLIED PHYSICS REVIEWS, 2023, 10 (01)
  • [6] POTASSIUM ACETATE MODIFIED INTERFACE FOR EFFICIENT AND STABLE PEROVSKITE SOLAR CELLS
    Hu L.
    Hu L.
    Yang Y.
    Li G.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (04): : 51 - 58
  • [7] Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells
    Kim, Y. C.
    Yang, T. -Y.
    Jeon, N. J.
    Im, J.
    Jang, S.
    Shin, T. J.
    Shin, H. -W.
    Kim, S.
    Lee, E.
    Kim, S.
    Noh, J. H.
    Seok, S. I.
    Seo, J.
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (10) : 2109 - 2116
  • [8] Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells
    Wen, Xiaoru
    Wu, Jiamin
    Ye, Meidan
    Gao, Di
    Lin, Changjian
    CHEMICAL COMMUNICATIONS, 2016, 52 (76) : 11355 - 11358
  • [9] Efficient and stable perovskite solar cells by interface engineering at the interface of electron transport layer/perovskite
    Kumar, Anjan
    Singh, Sangeeta
    Sharma, Amit
    Ahmed, Emad M.
    OPTICAL MATERIALS, 2022, 132
  • [10] Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells
    Li, Bowei
    Ferguson, Victoria
    Silva, S. Ravi P.
    Zhang, Wei
    ADVANCED MATERIALS INTERFACES, 2018, 5 (22):