Learning time-varying information flow from single-cell epithelial to mesenchymal transition data

被引:14
|
作者
Krishnaswamy, Smita [1 ]
Zivanovic, Nevena [2 ]
Sharma, Roshan [3 ]
Pe'er, Dana [4 ]
Bodenmiller, Bernd [2 ]
机构
[1] Yale Univ, Dept Genet, Dept Comp Sci, New Haven, CT USA
[2] Univ Zurich, Inst Mol Life Sci, Zurich, Switzerland
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[4] Mem Sloan Kettering Canc Ctr, Program Computat & Syst Biol, Sloan Kettering Inst, 1275 York Ave, New York, NY 10021 USA
来源
PLOS ONE | 2018年 / 13卷 / 10期
基金
美国国家卫生研究院;
关键词
MASS CYTOMETRY; PROGRESSION; STEM;
D O I
10.1371/journal.pone.0203389
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cellular regulatory networks are not static, but continuously reconfigure in response to stimuli via alterations in protein abundance and confirmation. However, typical computational approaches treat them as static interaction networks derived from a single time point. Here, we provide methods for learning the dynamic modulation of relationships between proteins from static single-cell data. We demonstrate our approach using TGF ss induced epithelial-to-mesenchymal transition (EMT) in murine breast cancer cell line, profiled with mass cytometry. We take advantage of the asynchronous rate of transition to EMT in the data and derive a pseudotime EMT trajectory. We propose methods for visualizing and quantifying time-varying edge behavior over the trajectory, and a metric of edge dynamism to predict the effect of drug perturbations on EMT.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Data denoising with transfer learning in single-cell transcriptomics
    Jingshu Wang
    Divyansh Agarwal
    Mo Huang
    Gang Hu
    Zilu Zhou
    Chengzhong Ye
    Nancy R. Zhang
    Nature Methods, 2019, 16 : 875 - 878
  • [42] Data denoising with transfer learning in single-cell transcriptomics
    Wang, Jingshu
    Agarwal, Divyansh
    Huang, Mo
    Hu, Gang
    Zhou, Zilu
    Ye, Chengzhong
    Zhang, Nancy R.
    NATURE METHODS, 2019, 16 (09) : 875 - +
  • [43] Deep learning shapes single-cell data analysis
    Qin Ma
    Dong Xu
    Nature Reviews Molecular Cell Biology, 2022, 23 : 303 - 304
  • [44] DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data via Dynamic Graph Structure Learning
    Campbell, Alexander
    Zippo, Antonio Giuliano
    Passamonti, Luca
    Toschi, Nicola
    Liò, Pietro
    arXiv, 2022,
  • [45] Learning Pathway Dynamics from Single-Cell Proteomic Data: A Comparative Study
    Verrou, Kleio-Maria
    Tsamardinos, Ioannis
    Papoutsoglou, Georgios
    CYTOMETRY PART A, 2020, 97 (03) : 241 - 252
  • [46] Deep learning for inferring gene relationships from single-cell expression data
    Yuan, Ye
    Bar-Joseph, Ziv
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) : 27151 - 27158
  • [47] Efficient information diffusion in time-varying graphs through deep reinforcement learning
    Matheus R. F. Mendonça
    André M. S. Barreto
    Artur Ziviani
    World Wide Web, 2022, 25 : 2535 - 2560
  • [48] Efficient information diffusion in time-varying graphs through deep reinforcement learning
    Mendonca, Matheus R. F.
    Barreto, Andre M. S.
    Ziviani, Artur
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (06): : 2535 - 2560
  • [49] Sequential Causal Estimation and Learning from Time-Varying Images
    Chalasani, Rakesh
    Cinar, Goktug T.
    Principe, Jose C.
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [50] A Deep Learning Approach to Selecting Representative Time Steps for Time-Varying Multivariate Data
    Porter, William P.
    Xing, Yunhao
    von Ohlen, Blaise R.
    Han, Jun
    Wang, Chaoli
    2019 IEEE VISUALIZATION CONFERENCE (VIS), 2019, : 131 - 135