Learning time-varying information flow from single-cell epithelial to mesenchymal transition data

被引:14
|
作者
Krishnaswamy, Smita [1 ]
Zivanovic, Nevena [2 ]
Sharma, Roshan [3 ]
Pe'er, Dana [4 ]
Bodenmiller, Bernd [2 ]
机构
[1] Yale Univ, Dept Genet, Dept Comp Sci, New Haven, CT USA
[2] Univ Zurich, Inst Mol Life Sci, Zurich, Switzerland
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[4] Mem Sloan Kettering Canc Ctr, Program Computat & Syst Biol, Sloan Kettering Inst, 1275 York Ave, New York, NY 10021 USA
来源
PLOS ONE | 2018年 / 13卷 / 10期
基金
美国国家卫生研究院;
关键词
MASS CYTOMETRY; PROGRESSION; STEM;
D O I
10.1371/journal.pone.0203389
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cellular regulatory networks are not static, but continuously reconfigure in response to stimuli via alterations in protein abundance and confirmation. However, typical computational approaches treat them as static interaction networks derived from a single time point. Here, we provide methods for learning the dynamic modulation of relationships between proteins from static single-cell data. We demonstrate our approach using TGF ss induced epithelial-to-mesenchymal transition (EMT) in murine breast cancer cell line, profiled with mass cytometry. We take advantage of the asynchronous rate of transition to EMT in the data and derive a pseudotime EMT trajectory. We propose methods for visualizing and quantifying time-varying edge behavior over the trajectory, and a metric of edge dynamism to predict the effect of drug perturbations on EMT.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Inference and multiscale model of epithelial-to-mesenchymal transition via single-cell transcriptomic data
    Sha, Yutong
    Wang, Shuxiong
    Zhou, Peijie
    Nie, Qing
    NUCLEIC ACIDS RESEARCH, 2020, 48 (17) : 9505 - 9520
  • [2] Protocol for inferring epithelial-to-mesenchymal transition trajectories from single-cell RNA sequencing data using R
    Najafi, Annice
    Jolly, Mohit Kumar
    George, Jason T.
    STAR PROTOCOLS, 2024, 5 (01):
  • [3] Tipping points in epithelial-mesenchymal lineages from single-cell transcriptomics data
    Barcenas, Manuel
    Bocci, Federico
    Nie, Qing
    BIOPHYSICAL JOURNAL, 2024, 123 (17) : 2849 - 2859
  • [4] Learning Time-Varying Graphs From Online Data
    Natali, Alberto
    Isufi, Elvin
    Coutino, Mario
    Leus, Geert
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2022, 3 : 212 - 228
  • [5] Dynamics of Single-Cell Protein Covariation during Epithelial-Mesenchymal Transition
    Khan, Saad
    Conover, Rachel
    Asthagiri, Anand R.
    Slavov, Nikolai
    JOURNAL OF PROTEOME RESEARCH, 2024,
  • [6] Detection of Biomarkers for Epithelial-Mesenchymal Transition with Single-Cell Trajectory Inference
    Murayama, Kosho
    Matsuda, Hideo
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2022, 27 (04):
  • [7] Inference of Intercellular Communications and Multilayer Gene-Regulations of Epithelial-Mesenchymal Transition From Single-Cell Transcriptomic Data
    Sha, Yutong
    Wang, Shuxiong
    Bocci, Federico
    Zhou, Peijie
    Nie, Qing
    FRONTIERS IN GENETICS, 2021, 11
  • [8] Comparative single-cell transcriptomes of dose and time dependent epithelial-mesenchymal spectrums
    Panchy, Nicholas
    Watanabe, Kazuhide
    Takahashi, Masataka
    Willems, Andrew
    Hong, Tian
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (03)
  • [9] Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution
    Loukia G. Karacosta
    Benedict Anchang
    Nikolaos Ignatiadis
    Samuel C. Kimmey
    Jalen A. Benson
    Joseph B. Shrager
    Robert Tibshirani
    Sean C. Bendall
    Sylvia K. Plevritis
    Nature Communications, 10
  • [10] Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution
    Karacosta, Loukia G.
    Anchang, Benedict
    Ignatiadis, Nikolaos
    Kimmey, Samuel C.
    Benson, Jalen A.
    Shrager, Joseph B.
    Tibshirani, Robert
    Bendall, Sean C.
    Plevritis, Sylvia K.
    NATURE COMMUNICATIONS, 2019, 10 (1)