CAM-based non-local attention network for weakly supervised fire detection

被引:3
作者
Wang, Wenjun [1 ,2 ,3 ]
Lai, Lvlong [1 ,3 ]
Chen, Jian [1 ]
Wu, Qingyao [1 ,4 ]
机构
[1] South China Univ Technol, Sch Software Engn, Guangzhou, Peoples R China
[2] Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang, Peoples R China
[3] Minist Educ, Key Lab Big Data & Intelligent Robot, Guangzhou, Peoples R China
[4] Pazhou Lab, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Weakly supervised; Fire detection; Class activation map; Non-local attention;
D O I
10.1007/s11761-022-00336-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many available object detectors are already used in fire detection, such as Faster RCNN, SSD, YOLO, etc., to localize the fire in images. Although these approaches perform well, they require object-level annotations for training, which are manually labeled and very expensive. In this paper, we propose a method based on the Class Activation Map (CAM) and non-local attention to explore the Weakly Supervised Fire Detection (WSFD) given only image-level annotations. Specifically, we first train a deep neural network with non-local attention as the classifier for identifying fire and non-fire images. Then, we use the classifier to create a CAM for every fire image in the inference stage and finally generate a corresponding bounding box according to each connected domain of the CAM. To evaluate the availability of our method, a benchmark dataset named WS-FireNet is constructed, and comprehensive experiments are performed on the WS-FireNet dataset. The experimental results demonstrate that our approach is effective in image-level supervised fire detection.
引用
收藏
页码:133 / 142
页数:10
相关论文
共 54 条
[1]  
[Anonymous], Fire-detection images datasethttps
[2]  
Barmpoutis P, 2019, INT CONF ACOUST SPEE, P8301, DOI [10.1109/icassp.2019.8682647, 10.1109/ICASSP.2019.8682647]
[3]   Weakly Supervised Deep Detection Networks [J].
Bilen, Hakan ;
Vedaldi, Andrea .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2846-2854
[4]  
Bochkovskiy A., 2020, ARXIV
[5]   Fast and Efficient Method for Fire Detection Using Image Processing [J].
Celik, Turgay .
ETRI JOURNAL, 2010, 32 (06) :881-890
[6]   CaMap: Camera-based Map Manipulation on Mobile Devices [J].
Chen, Liang ;
Chen, Dongyi .
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
[7]  
Dai JF, 2016, ADV NEUR IN, V29
[8]  
Donahue J., 2014, PROC CVPR IEEE, DOI [DOI 10.1109/CVPR.2014.81, 10.1109/CVPR.2014.81]
[9]  
Dosovitskiy A., 2020, P INT C LEARN REPR A
[10]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136