Bifurcations in droplet collisions

被引:4
|
作者
Dubey, A. [1 ]
Gustavsson, K. [1 ]
Bewley, G. P. [2 ]
Mehlig, B. [1 ]
机构
[1] Gothenburg Univ, Dept Phys, S-41296 Gothenburg, Sweden
[2] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
DILUTE POLYDISPERSE SYSTEM; INTERACTING SPHERES; CLOUD DROPLETS; PARTICLES; COAGULATION;
D O I
10.1103/PhysRevFluids.7.064401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Saffman and Turner [P. G. Saffman and J. S. Turner, J. Fluid Mech. 1, 16 (1956)] argued that the collision rate for droplets in turbulence increases as the turbulent strain rate increases. However, the numerical simulations of Dhanasekaran et al. [J. Dhanasekaran et al., J. Fluid Mech. 910, A10 (2021)] in a steady straining flow showed that the Saffman-Turner model is oversimplified because it neglects droplet-droplet interactions. These result in a complex dependence of the collision rate on the strain rate and on the differential settling speed. Here we show that this dependence is explained by a sequence of bifurcations in the collision dynamics. We compute the bifurcation diagram when strain is aligned with gravity and show that it yields important insights into the collision dynamics. First, the steady-state collision rate remains nonzero in the limit Kn -> 0, contrary to the common assumption that the collision rate tends to zero in this limit (Kn is a nondimensional measure of the mean free path of air). Second, the nonmonotonic dependence of the collision rate on the differential settling speed is explained by a grazing bifurcation. Third, the bifurcation analysis explains why so-called closed trajectories appear and disappear. Fourth, our analysis predicts strong spatial clustering near certain saddle points, where the effects of strain and differential settling cancel.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Critical charges for droplet collisions
    Dubey, A.
    Bewley, G. P.
    Gustavsson, K.
    Mehlig, B.
    PHYSICAL REVIEW FLUIDS, 2024, 9 (07):
  • [2] Preferred location of droplet collisions in turbulent flows
    Perrin, Vincent E.
    Jonker, Harm J. J.
    PHYSICAL REVIEW E, 2014, 89 (03)
  • [3] An Economical Model for Simulating Turbulence Enhancement of Droplet Collisions and Coalescence
    Krueger, Steven K.
    Kerstein, Alan R.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2018, 10 (08) : 1858 - 1881
  • [4] Stochastic Droplet-Fiber Collisions
    Schroeder, Simon
    Olawsky, Ferdinand
    Hering-Bertram, Martin
    Hagen, Hans
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS), 2011, 4 : 781 - 790
  • [5] Droplet collisions and interaction with the turbulent flow within a two-phase wind tunnel
    Bordas, Robert
    Hagemeier, Thomas
    Wunderlich, Bernd
    Thevenin, Dominique
    PHYSICS OF FLUIDS, 2011, 23 (08)
  • [6] Aluminum oxide droplet collisions: Molecular dynamics study
    Wang, Lei
    Wang, Mengjun
    Liu, Pingan
    Huang, Xi
    Ji, Zhengtao
    Gao, Song
    MODERN PHYSICS LETTERS B, 2025, 39 (02):
  • [7] Droplet-droplet, droplet-particle, and droplet-substrate collision behavior
    Islamova, A. G.
    Kerimbekova, S. A.
    Shlegel, N. E.
    Strizhak, P. A.
    POWDER TECHNOLOGY, 2022, 403
  • [8] Collisions of solid ice in planetesimal formation
    Deckers, J.
    Teiser, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 456 (04) : 4328 - 4334
  • [9] Ionizing protoplanetary discs in pebble collisions
    Wurm, Gerhard
    Jungmann, Felix
    Teiser, Jens
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 517 (01) : L65 - L70
  • [10] Droplet heat transfer on micro-post arrays: Effect of droplet size on droplet thermal characteristics
    Al-Sharafi, Abdullah
    Yilbas, Bekir S.
    Ali, H.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2017, 68 : 62 - 78