Some interpretations of the (k, p)-Fibonacci numbers

被引:4
作者
Paja, Natalia [1 ]
Wloch, Iwona [1 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, Al Powstancow Warszawy 12, PL-35359 Rzeszow, Poland
来源
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE | 2021年 / 62卷 / 03期
关键词
Fibonacci number; Pell number; tiling; FIBONACCI NUMBERS;
D O I
10.14712/1213-7243.2021.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the (k,p)-Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the (k, p)-Fibonacci numbers.
引用
收藏
页码:297 / 307
页数:11
相关论文
共 17 条
  • [1] On (k,p)-Fibonacci Numbers
    Bednarz, Natalia
    [J]. MATHEMATICS, 2021, 9 (07)
  • [2] Bednarz N, 2018, UTILITAS MATHEMATICA, V106, P39
  • [3] Bednarz U., 2015, J APPL MATH
  • [4] FIBONACCI AND TELEPHONE NUMBERS IN EXTREMAL TREES
    Bednarz, Urszula
    Wloch, Wona
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 121 - 133
  • [5] Bednarz U, 2017, OPUSC MATH, V37, P479, DOI 10.7494/OpMath.2017.37.4.479
  • [6] Berge C., 1971, MATH SCI ENG, V72
  • [7] Catarino P., 2013, INT J MATH ANAL, V7, P1877, DOI DOI 10.12988/IJMA.2013.35131
  • [8] Diestel Reinhard, 2010, GRAPH THEORY, V4th
  • [9] On the Fibonacci k-numbers
    Falcon, Sergio
    Plaza, Angel
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 32 (05) : 1615 - 1624
  • [10] The generalized Pell (p, i)-numbers and their Binet formulas, combinatorial representations, sums
    Kilic, Emrah
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (04) : 2047 - 2063