MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation

被引:37
作者
Kim, Yeong-Hyeon [1 ]
Shin, Ukcheol [2 ]
Park, Jinsun [2 ]
Kweon, In So [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Div Future Vehicle, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Unsupervised domain adaptation; thermal camera; semantic segmentation; autonomous driving;
D O I
10.1109/LRA.2021.3093652
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segmentation knowledge from an RGB image segmentation network. We also enhance the generalization capability of our thermal segmentation network with pixel-level domain adaptation bridging day and night thermal image domains. With our framework, a thermal image segmentation network can achieve high performance without any ground-truth labels by exploiting successive multi-spectral knowledge transfers including RGB-to-RGB, RGB-to-Thermal, and Thermal-to-Thermal adaptations. Moreover, we provide a real-world RGB-Thermal semantic segmentation dataset with 950 manually annotated Cityscapes-style ground-truth labels in 19 classes. Experimental results on real-world datasets demonstrate the effectiveness and robustness of the proposed framework quantitatively and qualitatively.
引用
收藏
页码:6497 / 6504
页数:8
相关论文
共 36 条
[1]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[2]   All about Structure: Adapting Structural Information across Domains for Boosting Semantic Segmentation [J].
Chang, Wei-Lun ;
Wang, Hui-Po ;
Peng, Wen-Hsiao ;
Chiu, Wei-Chen .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1900-1909
[3]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[4]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[5]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[6]   DLOW: Domain Flow for Adaptation and Generalization [J].
Gong, Rui ;
Li, Wen ;
Chen, Yuhua ;
Van Gool, Luc .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2472-2481
[7]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[8]  
Ha Q, 2017, IEEE INT C INT ROBOT, P5108, DOI 10.1109/IROS.2017.8206396
[9]  
He K., 2017, IEEE INT C COMPUT VI, P2961, DOI [10.1109/iccv.201, DOI 10.1109/ICCV.2017.322]
[10]  
Hoffman J, 2018, PR MACH LEARN RES, V80