Eigenvalue statistics of the real Ginibre ensemble

被引:116
作者
Forrester, Peter J. [1 ]
Nagao, Taro
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1103/PhysRevLett.99.050603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The real Ginibre ensemble consists of random N x N matrices formed from independent and identically distributed standard Gaussian entries. By using the method of skew orthogonal polynomials, the general n-point correlations for the real eigenvalues, and for the complex eigenvalues, are given as n x n Pfaffians with explicit entries. A computationally tractable formula for the cumulative probability density of the largest real eigenvalue is presented. This is relevant to May's stability analysis of biological webs.
引用
收藏
页数:4
相关论文
共 29 条
[1]  
AKEMANN G, ARXIVMATHPH0703019V2
[2]   Probability of local bifurcation type from a fixed point: A random matrix perspective [J].
Albers, D. J. ;
Sprott, J. C. .
JOURNAL OF STATISTICAL PHYSICS, 2006, 125 (04) :889-925
[3]  
[Anonymous], LOG GASES RANDOM MAT
[4]  
[Anonymous], 2000, QUANTUM SIGNATURES C
[5]  
Bai ZD, 1997, ANN PROBAB, V25, P494
[6]   Random-matrix theory of quantum transport [J].
Beenakker, CWJ .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :731-808
[7]   Correlations between zeros of a random polynomial [J].
Bleher, P ;
Di, XJ .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (1-2) :269-305
[10]  
Edelman A., 1994, J. Am. Math. So., V7, P247, DOI DOI 10.1090/S0894-0347-1994-1231689-0