Identification of Functional piRNAs Using a Convolutional Neural Network

被引:23
作者
Ali, Syed Danish [1 ,2 ]
Alam, Waleed [1 ]
Tayara, Hilal [3 ]
Chong, Kil To [4 ]
机构
[1] Jeonbuk Natl Univ, Dept Elect & Informat Engn, Jeonju 54896, South Korea
[2] Univ Azad Jammu & Kashmir, Dept Elect Engn, Muzaffarabad 13100, Pakistan
[3] Jeonbuk Natl Univ, Sch Int Engn & Sci, Jeonju 54896, South Korea
[4] Jeonbuk Natl Univ, Adv Elect & Informat Res Ctr, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
piRNAs; small non-coding RNAs; sequence analysis; convolutional neural network; deep learning; SMALL RNAS; PIWI; PROTEIN; SITES; PROGRESS; RULES;
D O I
10.1109/TCBB.2020.3034313
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Piwi-interacting RNAs (piRNAs) are a distinct sub-class of small non-coding RNAs that are mainly responsible for germline stem cell maintenance, gene stability, and maintaining genome integrity by repression of transposable elements. piRNAs are also expressed aberrantly and associated with various kinds of cancers. To identify piRNAs and their role in guiding target mRNA deadenylation, the currently available computational methods require urgent improvements in performance. To facilitate this, we propose a robust predictor based on a lightweight and simplified deep learning architecture using a convolutional neural network (CNN) to extract significant features from raw RNA sequences without the need for more customized features. The proposed model's performance is comprehensively evaluated using k-fold cross-validation on a benchmark dataset. The proposed model significantly outperforms existing computational methods in the prediction of piRNAs and their role in target mRNA deadenylation. In addition, a user-friendly and publicly-accessible web server is available at http://nsclbio.jbnu.ac.kr/tools/2S-piRCNN/
引用
收藏
页码:1661 / 1669
页数:9
相关论文
共 51 条
[1]   A CNN-Based RNA N6-Methyladenosine Site Predictor for Multiple Species Using Heterogeneous Features Representation [J].
Alam, Waleed ;
Ali, Syed Danish ;
Tayara, Hilal ;
Chong, Kil To .
IEEE ACCESS, 2020, 8 :138203-138209
[2]  
[Anonymous], 2009, NATURAL SCI
[3]   A novel class of small RNAs bind to MILI protein in mouse testes [J].
Aravin, Alexei ;
Gaidatzis, Dimos ;
Pfeffer, Sebastien ;
Lagos-Quintana, Mariana ;
Landgraf, Pablo ;
Iovino, Nicola ;
Morris, Patricia ;
Brownstein, Michael J. ;
Kuramochi-Miyagawa, Satomi ;
Nakano, Toru ;
Chien, Minchen ;
Russo, James J. ;
Ju, Jingyue ;
Sheridan, Robert ;
Sander, Chris ;
Zavolan, Mihaela ;
Tuschl, Thomas .
NATURE, 2006, 442 (7099) :203-207
[4]  
Brennecke J, 2007, CELL, V128, P1089, DOI 10.1016/j.cell.2007.01.043
[5]   NONCODE v3.0: integrative annotation of long noncoding RNAs [J].
Bu, Dechao ;
Yu, Kuntao ;
Sun, Silong ;
Xie, Chaoyong ;
Skogerbo, Geir ;
Miao, Ruoyu ;
Xiao, Hui ;
Liao, Qi ;
Luo, Haitao ;
Zhao, Guoguang ;
Zhao, Haitao ;
Liu, Zhiyong ;
Liu, Changning ;
Chen, Runsheng ;
Zhao, Yi .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D210-D215
[6]  
Chollet F., 2018, Keras: The Python Deep Learning Library
[7]   PREDICTION OF PROTEIN STRUCTURAL CLASSES [J].
CHOU, KC ;
ZHANG, CT .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1995, 30 (04) :275-349
[8]   Recent progress in protein subcellular location prediction [J].
Chou, Kuo-Chen ;
Shen, Hong-Bin .
ANALYTICAL BIOCHEMISTRY, 2007, 370 (01) :1-16
[9]   Impacts of Bioinformatics to Medicinal Chemistry [J].
Chou, Kuo-Chen .
MEDICINAL CHEMISTRY, 2015, 11 (03) :218-234
[10]  
Conneau A, 2017, 15TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2017), VOL 1: LONG PAPERS, P1107