Multivariate mining of an alpaca immune repertoire identifies potent cross-neutralizing SARS-CoV-2 nanobodies

被引:19
作者
Hanke, Leo [1 ]
Sheward, Daniel J. [1 ,2 ]
Pankow, Alec [1 ,5 ]
Vidakovics, Laura Perez [1 ]
Karl, Vivien [1 ]
Kim, Changil [1 ]
Urgard, Egon [1 ]
Smith, Natalie L. [1 ]
Astorga-Wells, Juan [3 ,6 ]
Ekstrom, Simon [4 ]
Coquet, Jonathan M. [1 ]
McInerney, Gerald M. [1 ]
Murrell, Ben [1 ]
机构
[1] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden
[2] Univ Cape Town, Inst Infect Dis & Mol Med, Div Med Virol, Cape Town, South Africa
[3] Karolinska Inst, Dept Med Biochem & Biophys, S-17177 Stockholm, Sweden
[4] Lund Univ, Swedish Natl Infrastruct Biol Mass Spectrometry B, Lund, Sweden
[5] Icahn Sch Med Mt Sinai, Grad Sch Biomed Sci, 1 Gustave Levy Pi, New York, NY 10029 USA
[6] Pelago Biosci, Banvaktsvagen 20, S-17148 Solna, Sweden
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
HYDROGEN-EXCHANGE; MASS-SPECTROMETRY; MATURATION; BINDING; SPIKE; MICE;
D O I
10.1126/sciadv.abm0220
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional approaches to isolate and characterize nanobodies are laborious. We combine phage display, multivariate enrichment, next-generation sequencing, and a streamlined screening strategy to identify numerous antisevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nanobodies. We characterize their potency and specificity using neutralization assays and hydrogen/deuterium exchange mass spectrometry (HDX-MS). The most potent nanobodies bind to the receptor binding motif of the receptor binding domain (RBD), and we identify two exceptionally potent members of this category (with monomeric half-maximal inhibitory concentrations around 13 and 16 ng/ml). Other nanobodies bind to a more conserved epitope on the side of the RBD and are able to potently neutralize the SARS-CoV-2 founder virus (42 ng/ml), the Beta variant (B.1.351/501Y.V2) (35 ng/ml), and also cross-neutralize the more distantly related SARS-CoV- 1 (0.46.g/ml). The approach presented here is well suited for the screening of phage libraries to identify functional nanobodies for various biomedical and biochemical applications.
引用
收藏
页数:16
相关论文
共 58 条
  • [1] SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies
    Barnes, Christopher O.
    Jette, Claudia A.
    Abernathy, Morgan E.
    Dam, Kim-Marie A.
    Esswein, Shannon R.
    Gristick, Harry B.
    Malyutin, Andrey G.
    Sharaf, Naima G.
    Huey-Tubman, Kathryn E.
    Lee, Yu E.
    Robbiani, Davide F.
    Nussenzweig, Michel C.
    West, Anthony P., Jr.
    Bjorkman, Pamela J.
    [J]. NATURE, 2020, 588 (7839) : 682 - +
  • [2] Barnes CO, 2020, CELL, V182, P828, DOI [10.1016/j.cell.2020.06.025, 10.1101/2020.05.28.121533]
  • [3] Dimensionality reduction for visualizing single-cell data using UMAP
    Becht, Etienne
    McInnes, Leland
    Healy, John
    Dutertre, Charles-Antoine
    Kwok, Immanuel W. H.
    Ng, Lai Guan
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 38 - +
  • [4] MULTIDIMENSIONAL BINARY SEARCH TREES USED FOR ASSOCIATIVE SEARCHING
    BENTLEY, JL
    [J]. COMMUNICATIONS OF THE ACM, 1975, 18 (09) : 509 - 517
  • [5] Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance (vol 177, pg 1153, 2019)
    Cirelli, Kimberly M.
    Carnathan, Diane G.
    Nogal, Bartek
    Martin, Jacob T.
    Rodriguez, Oscar L.
    Upadhyay, Amit A.
    Enemuo, Chiamaka A.
    Gebru, Etse H.
    Choe, Yury
    Viviano, Federico
    Nakao, Catherine
    Pauthner, Matthias G.
    Reiss, Samantha
    Cottrell, Christopher A.
    Smith, Melissa L.
    Bastidas, Raiza
    Gibson, William
    Wolabaugh, Amber N.
    Melo, Mariane B.
    Cossette, Benjamin
    Kumar, Venkatesh
    Patel, Nirav B.
    Tokatlian, Talar
    Menis, Sergey
    Kulp, Daniel W.
    Burton, Dennis R.
    Murrell, Ben
    Schief, William R.
    Bosinger, Steven E.
    Ward, Andrew B.
    Watson, Corey T.
    Silvestri, Guido
    Irvine, Darrell J.
    Crotty, Shane
    [J]. CELL, 2020, 180 (01) : 206 - 206
  • [6] Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR (Publication with Expression of Concern)
    Corman, Victor M.
    Landt, Olfert
    Kaiser, Marco
    Molenkamp, Richard
    Meijer, Adam
    Chu, Daniel K. W.
    Bleicker, Tobias
    Bruenink, Sebastian
    Schneider, Julia
    Schmidt, Marie Luisa
    Mulders, Daphne G. J. C.
    Haagmans, Bart L.
    van der Veer, Bas
    van den Brink, Sharon
    Wijsman, Lisa
    Goderski, Gabriel
    Romette, Jean-Louis
    Ellis, Joanna
    Zambon, Maria
    Peiris, Malik
    Goossens, Herman
    Reusken, Chantal
    Koopmans, Marion P. G.
    Drosten, Christian
    [J]. EUROSURVEILLANCE, 2020, 25 (03) : 23 - 30
  • [7] Analytical Aspects of Hydrogen Exchange Mass Spectrometry
    Engen, John R.
    Wales, Thomas E.
    [J]. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 8, 2015, 8 : 127 - 148
  • [8] Faria NR, 2021, SCIENCE, V372, P815, DOI [10.1126/science.abh2644, 10.1101/2021.02.26.21252554, 10.1126/science.abh2644Article]
  • [9] Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition
    Greaney, Allison J.
    Starr, Tyler N.
    Gilchuk, Pavlo
    Zost, Seth J.
    Binshtein, Elad
    Loes, Andrea N.
    Hilton, Sarah K.
    Huddleston, John
    Eguia, Rachel
    Crawford, Katharine H. D.
    Dingens, Adam S.
    Nargi, Rachel S.
    Sutton, Rachel E.
    Suryadevara, Naveenchandra
    Rothlauf, Paul W.
    Liu, Zhuoming
    Whelan, Sean P. J.
    Carnahan, Robert H.
    Crowe, James E., Jr.
    Bloom, Jesse D.
    [J]. CELL HOST & MICROBE, 2021, 29 (01) : 44 - +
  • [10] NATURALLY-OCCURRING ANTIBODIES DEVOID OF LIGHT-CHAINS
    HAMERSCASTERMAN, C
    ATARHOUCH, T
    MUYLDERMANS, S
    ROBINSON, G
    HAMERS, C
    SONGA, EB
    BENDAHMAN, N
    HAMERS, R
    [J]. NATURE, 1993, 363 (6428) : 446 - 448