Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection

被引:29
作者
Alhaddad, Ahmad Yaser [1 ]
Aly, Hussein [2 ]
Gad, Hoda [3 ]
Al-Ali, Abdulaziz [2 ]
Sadasivuni, Kishor Kumar [4 ]
Cabibihan, John-John [1 ]
Malik, Rayaz A. [3 ]
机构
[1] Qatar Univ, Dept Mech & Ind Engn, Doha, Qatar
[2] Qatar Univ, KINDI Ctr Comp Res, Doha, Qatar
[3] Weill Cornell Med Qatar, Doha, Qatar
[4] Qatar Univ, Ctr Adv Mat, Doha, Qatar
关键词
diabetes mellitus; non-invasive wearables and sensors; hypoglycemia; machine learning; blood glucose management; deep learning; bodily fluids glucose; SUPPORT VECTOR MACHINES; HEART-RATE-VARIABILITY; TEAR GLUCOSE; ELECTROCHEMICAL GLUCOSE; MOUTHGUARD BIOSENSOR; SALIVA GLUCOSE; SWEAT GLUCOSE; HYPOGLYCEMIA; PREDICTION; SYSTEM;
D O I
10.3389/fbioe.2022.876672
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Diabetes mellitus is characterized by elevated blood glucose levels, however patients with diabetes may also develop hypoglycemia due to treatment. There is an increasing demand for non-invasive blood glucose monitoring and trends detection amongst people with diabetes and healthy individuals, especially athletes. Wearable devices and non-invasive sensors for blood glucose monitoring have witnessed considerable advances. This review is an update on recent contributions utilizing novel sensing technologies over the past five years which include electrocardiogram, electromagnetic, bioimpedance, photoplethysmography, and acceleration measures as well as bodily fluid glucose sensors to monitor glucose and trend detection. We also review methods that use machine learning algorithms to predict blood glucose trends, especially for high risk events such as hypoglycemia. Convolutional and recurrent neural networks, support vector machines, and decision trees are examples of such machine learning algorithms. Finally, we address the key limitations and challenges of these studies and provide recommendations for future work.
引用
收藏
页数:23
相关论文
共 229 条
[1]  
Abbas H, 2018, IEEE MTTS INT MICRO, P182, DOI 10.1109/RFM.2018.8846546
[2]   Predicting long-term type 2 diabetes with support vector machine using oral glucose tolerance test [J].
Abbas, Hasan T. ;
Alic, Lejla ;
Erraguntla, Madhav ;
Ji, Jim X. ;
Abdul-Ghani, Muhammad ;
Abbasi, Qammer H. ;
Qaraqe, Marwa K. .
PLOS ONE, 2019, 14 (12)
[3]   Sweat chloride as a biomarker of CFTR activity: Proof of concept and ivacaftor clinical trial data [J].
Accurso, Frank J. ;
Van Goor, Fredrick ;
Zha, Jiuhong ;
Stone, Anne J. ;
Dong, Qunming ;
Ordonez, Claudia L. ;
Rowe, Steven M. ;
Clancy, John Paul ;
Konstan, Michael W. ;
Hoch, Heather E. ;
Heltshe, Sonya L. ;
Ramsey, Bonnie W. ;
Campbell, Preston W. ;
Ashlock, Melissa A. .
JOURNAL OF CYSTIC FIBROSIS, 2014, 13 (02) :139-147
[4]   Heart rate variability: a review [J].
Acharya, U. Rajendra ;
Joseph, K. Paul ;
Kannathal, N. ;
Lim, Choo Min ;
Suri, Jasjit S. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (12) :1031-1051
[5]   A deep convolutional neural network model to classify heartbeats [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Tan, Ru San .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :389-396
[6]   Subtypes of Type 2 Diabetes Determined From Clinical Parameters [J].
Ahlqvist, Emma ;
Prasad, Rashmi B. ;
Groop, Leif .
DIABETES, 2020, 69 (10) :2086-2093
[7]   Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables [J].
Ahlqvist, Emma ;
Storm, Petter ;
Karajamaki, Annemari ;
Martinell, Mats ;
Dorkhan, Mozhgan ;
Carlsson, Annelie ;
Vikman, Petter ;
Prasad, Rashmi B. ;
Aly, Dina Mansour ;
Almgren, Peter ;
Wessman, Ylva ;
Shaat, Nael ;
Spegel, Peter ;
Mulder, Hindrik ;
Lindholm, Eero ;
Melander, Olle ;
Hansson, Ola ;
Malmqvist, Ulf ;
Lernmark, Ake ;
Lahti, Kaj ;
Forsen, Tom ;
Tuomi, Tiinamaija ;
Rosengren, Anders H. ;
Groop, Leif .
LANCET DIABETES & ENDOCRINOLOGY, 2018, 6 (05) :361-369
[8]   Association between tear and blood glucose concentrations: Random intercept model adjusted with confounders in tear samples negative for occult blood [J].
Aihara, Masakazu ;
Kubota, Naoto ;
Minami, Takahiro ;
Shirakawa, Rika ;
Sakurai, Yoshitaka ;
Hayashi, Takanori ;
Iwamoto, Masahiko ;
Takamoto, Iseki ;
Kubota, Tetsuya ;
Suzuki, Ryo ;
Usami, Satoshi ;
Jinnouchi, Hideaki ;
Aihara, Makoto ;
Yamauchi, Toshimasa ;
Sakata, Toshiya ;
Kadowaki, Takashi .
JOURNAL OF DIABETES INVESTIGATION, 2021, 12 (02) :266-276
[9]   Efficient Machine Learning for Big Data: A Review [J].
Al-Jarrah, Omar Y. ;
Yoo, Paul D. ;
Muhaidat, Sami ;
Karagiannidis, George K. ;
Taha, Kamal .
BIG DATA RESEARCH, 2015, 2 (03) :87-93
[10]   Detection of Challenging Behaviours of Children with Autism Using Wearable Sensors during Interactions with Social Robots [J].
Alban, Ahmad Qadeib ;
Ayesh, Malek ;
Alhaddad, Ahmad Yaser ;
Al-Ali, Abdulaziz Khalid ;
So, Wing Chee ;
Connor, Olcay ;
Cabibihan, John-John .
2021 30TH IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2021, :852-857