Fast hydriding Mg-Zr-Mn-Ni alloy compositions for high capacity hydrogen storage application

被引:20
作者
Bambhaniya, K. G. [2 ]
Grewal, G. S. [2 ]
Shrinet, V. [2 ]
Singh, N. L. [1 ]
Govindan, T. P. [2 ]
机构
[1] Maharaja Sayajirao Univ Baroda, Fac Sci, Dept Phys, Vadodara 390002, India
[2] Elect Res & Dev Assoc, Vadodara, India
关键词
Mechanical alloying; Pressure reduction techniques; Hydriding - dehydriding Kinetics; MAGNESIUM;
D O I
10.1016/j.ijhydene.2011.04.099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen is one of the best alternative to petroleum as an energy carrier. However, the development of a Hydrogen-based economy requires commercialization of safe and cost-effective Hydrogen storage system. In this paper, alloys belonging to Mg-Zr-Mn-Ni alloy system are synthesized using high energy ball milling method. The particle size evolution, chemical analysis and nano-scaled structures were characterized by using SEM, EDXS and XRD techniques, respectively. The optimized - highest hydrogen storing - alloy has particle size of about 8.36 +/- 1.17 gm with crystallite size 16.99 +/- 5.48 nm. Hydrogen absorption-desorption measurement is carried out on the principle of pressure reduction method. The alloy coded with MZ1 shows uptake of greater than 7 mass % H-2 at a charging temperature of 200 degrees C, indicating high gravimetric hydrogen storage capacity at relatively lower hydriding temperature. The optimized Mg-Zr-Mn-Ni alloy also shows considerably enhanced hydriding - dehydriding kinetics, compare to pure Mg. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3671 / 3676
页数:6
相关论文
共 18 条
  • [1] Structural characterization and reversible hydrogen absorption properties of Mg2Ni rich nanocomposite materials synthesized by mechanical alloying
    Abdellaoui, M
    Cracco, D
    Percheron-Guegan, A
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 1998, 268 (1-2) : 233 - 240
  • [2] David E., 2007, J. of Achievements in Materials and Manufacturing Engineering, V20, P87
  • [3] DORNHEIM M, 2009, ENCY ELECTROCHEM POW, P459
  • [4] Catalytic effect of niobium oxide on hydrogen storage properties of mechanically ball milled MgH2
    Hanada, Nobuko
    Ichikawa, Takayuki
    Fujii, Hironobu
    [J]. PHYSICA B-CONDENSED MATTER, 2006, 383 (01) : 49 - 50
  • [5] Nanoscale Mg-based materials for hydrogen storage
    Jurczyk, M.
    Smardz, L.
    Okonska, I.
    Jankowska, E.
    Nowak, M.
    Smardz, K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (01) : 374 - 380
  • [6] Measurement of the pressure-composition isotherms of high-temperature and low-temperature metal hydrides
    Kapischke, J
    Hapke, J
    [J]. EXPERIMENTAL THERMAL AND FLUID SCIENCE, 1998, 18 (01) : 70 - 81
  • [7] Hydrogen absorption and desorption kinetics of Ag-Mg-Ni alloys
    Li, Q
    Chou, KC
    Lin, Q
    Jiang, LJ
    Zhan, F
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (08) : 843 - 849
  • [8] Combustion-type hydrogenation of nanostructured Mg-based composites for hydrogen storage
    Lototsky, M. V.
    Denys, R. V.
    Yartys, V. A.
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2009, 33 (13) : 1114 - 1125
  • [9] Majchrzycki W, 2004, ADV BATT ACCU ABA 5
  • [10] Nanomaterials for Hydrogen Storage Applications: A Review
    Niemann, Michael U.
    Srinivasan, Sesha S.
    Phani, Ayala R.
    Kumar, Ashok
    Goswami, D. Yogi
    Stefanakos, Elias K.
    [J]. JOURNAL OF NANOMATERIALS, 2008, 2008