The working principle of hybrid perovskite gamma-ray photon counter

被引:29
作者
Liu, Fangze [1 ]
Yoho, Michael [2 ]
Tsai, Hsinhan [1 ]
Fernando, Kasun [1 ]
Tisdale, Jeremy [1 ]
Shrestha, Shreetu [1 ]
Baldwin, Jon K. [1 ]
Mohite, Aditya D. [3 ]
Tretiak, Sergei [1 ,4 ]
Vo, Duc T. [2 ]
Nie, Wanyi [1 ]
机构
[1] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Nucl Engn & Nonproliferat Div, Safeguards Sci & Technol, Los Alamos, NM 87545 USA
[3] Rice Univ, Chem & Biomol Engn, Houston, TX 77005 USA
[4] Los Alamos Natl Lab, Theory Div, Phys & Chem Mat, Los Alamos, NM 87545 USA
关键词
SINGLE-CRYSTALS; DETECTORS; METHYLAMMONIUM; ENERGY;
D O I
10.1016/j.mattod.2020.02.022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gamma-ray spectroscopy that quantifies the gamma-ray energies is a critical technology widely needed in astrophysics, nuclear material detection and medical treatment. The key is to precisely count gamma-ray photons using sensitive detectors. In this paper, we investigate the operational principles of chlorine-doped methylammonium lead tribromide (MAPbBr(3-x)Cl(x)) perovskite single crystal detectors that can efficiently count gamma-ray photon events with electrical pulses. Specifically, we find the main dark current originates from the thermally activated electron injection from the impurities, and using high work function contacts can block out the dark noise thus allows for efficient pulse collection at higher electrical fields similar to 500 V/cm. As a result, we observe strong electrical pulses when exposing the detector under radioactive sources emitting gamma-ray photons at various energies. Our results also reveal the fundamental issues that prevent the reliable observation of photo-electric peak. This work suggest pathway towards energy resolved gamma-ray spectroscopy using perovskite crystal detectors.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 40 条
[1]  
[Anonymous], 2016, J PHYS CONF SER, DOI DOI 10.1088/1742-6596/763/1/012008
[2]  
[Anonymous], 2015, J PHYS CHEM LETT, DOI DOI 10.1021/ACS.JPCLETT.5B00480
[3]  
[Anonymous], 2018, NATURE, DOI DOI 10.1038/S41586-018-0451-1
[4]  
[Anonymous], 2018, NAT COMMUN, DOI DOI 10.1038/S41467-018-04073-3
[5]  
[Anonymous], 2018, J APPL PHYS, DOI DOI 10.1063/1.5041006
[6]  
[Anonymous], 1999, NUCL INSTRUM METH A
[7]  
[Anonymous], 2017, NAT PHOTONICS, DOI DOI 10.1038/S41566-017-0012-4
[8]  
[Anonymous], 2009, APPL PHYS LETT
[9]  
[Anonymous], 2016, CR PHYS, DOI DOI 10.1016/J.CRHY.2016.04.008
[10]  
[Anonymous], 2019, ACS NANO, DOI DOI 10.1021/ACSNANO.8B09484