Nonlinear separation concerning E-optimal solution of constrained multi-objective optimization problems

被引:5
作者
You, M. X. [1 ]
Li, S. J. [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
E-optimal solution; Image space analysis; Nonlinear vector separation; Saddle point; Optimality condition; VECTOR OPTIMIZATION; EXTREMUM PROBLEMS; SADDLE-POINTS;
D O I
10.1007/s11590-017-1109-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper aims at investigating optimality conditions in terms of E-optimal solution for constrained multi-objective optimization problems in a general scheme, where E is an improvement set with respect to a nontrivial closed convex point cone with apex at the origin. In the case where E is not convex, nonlinear vector regular weak separation functions and scalar weak separation functions are introduced respectively to realize the separation between the two sets in the image space, and Lagrangian-type optimality conditions are established. These results extend and improve the convex ones in the literature.
引用
收藏
页码:123 / 136
页数:14
相关论文
共 17 条
  • [1] Castellani G., 1979, Survey of Math. Program., V2, P423
  • [2] Vector Optimization Problems via Improvement Sets
    Chicco, M.
    Mignanego, F.
    Pusillo, L.
    Tijs, S.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 150 (03) : 516 - 529
  • [3] THEOREMS OF THE ALTERNATIVE AND OPTIMALITY CONDITIONS
    GIANNESSI, F
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1984, 42 (03) : 331 - 365
  • [4] Giannessi F., 2000, THEORY VECTOR OPTIMI
  • [5] Giannessi F., 2005, MATH CONCEPTS METHOD, V1
  • [6] Two types of approximate saddle points
    Gupta, Deepali
    Mehra, Aparna
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (5-6) : 532 - 550
  • [7] Improvement sets and vector optimization
    Gutierrez, C.
    Jimenez, B.
    Novo, V.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 223 (02) : 304 - 311
  • [8] Vector quasi-equilibrium problems: separation, saddle points and error bounds for the solution set
    Guu, S. -M.
    Li, J.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2014, 58 (04) : 751 - 767
  • [9] Hiriart-Urruty J. B., 1979, Mathematics of Operations Research, V4, P79, DOI 10.1287/moor.4.1.79
  • [10] Jahn J., 2004, VECTOR OPTIMIZATION, P2011