SPATIAL INVASION THRESHOLD OF LYME DISEASE

被引:31
作者
Wang, Wendi [1 ]
Zhao, Xiao-Qiang [2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Key Lab Ecoenvironm Gorges Reservoir Reg 3, Chongqing 400715, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
principal eigenvalues; threshold dynamics; spatial heterogeneity; reproduction number; disease control; IXODES-SCAPULARIS ACARI; POPULATION-DYNAMICS; INFECTION TRANSMISSION; REPRODUCTION NUMBERS; DIFFUSION-MODEL; PERSISTENCE; HETEROGENEITY; IXODIDAE; VECTOR; VIRUS;
D O I
10.1137/140981769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mathematical model of Lyme disease is formulated to incorporate a spatially heterogenous structure. The basic reproduction number R-0 of the disease and its computational formulae are established. It is shown that R-0 serves as a threshold value between extinction and persistence in the evolution of Lyme disease. Numerical simulations indicate that spatial heterogeneity of the disease transmission coefficient increases the basic reproduction number, but spatial heterogeneity of the carrying capacity of mice alleviates the value of R-0. Moreover, the influence of host population in size, destruction of tick habitats, and deployment of vaccinations is studied to give insights into optimal control of the disease.
引用
收藏
页码:1142 / 1170
页数:29
相关论文
共 54 条
[21]   The effect of landscape heterogeneity and host movement on a tick-borne pathogen [J].
Jones, Edward O. ;
Webb, Steven D. ;
Ruiz-Fons, Francisco J. ;
Albon, Steven ;
Gilbert, Lucy .
THEORETICAL ECOLOGY, 2011, 4 (04) :435-448
[22]   Spatial dynamics of Lyme disease: A review [J].
Killilea, Mary E. ;
Swei, Andrea ;
Lane, Robert S. ;
Briggs, Cheryl J. ;
Ostfeld, Richard S. .
ECOHEALTH, 2008, 5 (02) :167-195
[23]  
Krein M.G., 1948, Uspehi Matem Nauk, V3, P3
[24]   Fundamental processes in the evolutionary ecology of Lyme borreliosis [J].
Kurtenbach, Klaus ;
Hanincova, Klara ;
Tsao, Jean I. ;
Margos, Gabriele ;
Fish, Durland ;
Ogden, Nicholas H. .
NATURE REVIEWS MICROBIOLOGY, 2006, 4 (09) :660-669
[25]   EFFICIENT TRANSMISSION OF TICK-BORNE ENCEPHALITIS-VIRUS BETWEEN COFEEDING TICKS [J].
LABUDA, M ;
JONES, LD ;
WILLIAMS, T ;
DANIELOVA, V ;
NUTTALL, PA .
JOURNAL OF MEDICAL ENTOMOLOGY, 1993, 30 (01) :295-299
[26]  
LaDeau SL, 2011, ECOL APPL, V21, P1443, DOI 10.1890/09-1409.1
[27]   Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts [J].
Lambin, Eric F. ;
Tran, Annelise ;
Vanwambeke, Sophie O. ;
Linard, Catherine ;
Soti, Valerie .
INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS, 2010, 9
[28]   Tick seeking assumptions and their implications for Lyme disease predictions [J].
Lou, Yijun ;
Wu, Jianhong .
ECOLOGICAL COMPLEXITY, 2014, 17 :99-106
[29]   Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics [J].
Lou, Yuan ;
Yanagida, Eiji .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2006, 23 (03) :275-292
[30]   Effects of heterogeneity on spread and persistence in rivers [J].
Lutscher, Frithjof ;
Lewis, Mark A. ;
McCauley, Edward .
BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (08) :2129-2160