S-phase-specific expression of the Mad3 gene in proliferating and differentiating cells

被引:25
作者
Fox, EJ [1 ]
Wright, SC [1 ]
机构
[1] Univ Leeds, Sch Biochem & Mol Biol, Leeds LS2 9JT, W Yorkshire, England
关键词
cell cycle; differentiation; Mad; Myc; transcription;
D O I
10.1042/0264-6021:3590361
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Myc/Max/Mad transcription factor network plays a central role in the control of cellular proliferation, differentiation and apoptosis. In order to elucidate the biological function of Mad3, we have analysed the precise temporal patterns of Mad3 mRNA expression during the cell cycle and differentiation in cultured cells. We show that Mad3 is induced at the G1/S transition in proliferating cells; expression persists throughout S-phase, and then declines as cells pass through G2 and mitosis. The expression pattern of Mad3 is coincident with that of Cdc2 throughout the cell cycle. In contrast, the expression of Mad3 during differentiation of cultured mouse erythroleukemia cells shows two transient peaks of induction. The first of these occurs at the onset of differentiation, and does not correlate with the S-phase of the cell cycle, whereas the second is coincident with the S-phase burst that precedes the terminal stages of differentiation. Our results therefore suggest that Mad3 serves a cell-cycle-related function in both proliferating and differentiating cells, and that it may also have a distinct role at various stages of differentiation.
引用
收藏
页码:361 / 367
页数:7
相关论文
共 64 条
  • [1] TRANSCRIPTIONAL ACTIVATION BY THE HUMAN C-MYC ONCOPROTEIN IN YEAST REQUIRES INTERACTION WITH MAX
    AMATI, B
    DALTON, S
    BROOKS, MW
    LITTLEWOOD, TD
    EVAN, GI
    LAND, H
    [J]. NATURE, 1992, 359 (6394) : 423 - 426
  • [2] Ayer DE, 1996, MOL CELL BIOL, V16, P5772
  • [3] MAD-MAX TRANSCRIPTIONAL REPRESSION IS MEDIATED BY TERNARY COMPLEX-FORMATION WITH MAMMALIAN HOMOLOGS OF YEAST REPRESSOR SIN3
    AYER, DE
    LAWRENCE, QA
    EISENMAN, RN
    [J]. CELL, 1995, 80 (05) : 767 - 776
  • [4] MAD - A HETERODIMERIC PARTNER FOR MAX THAT ANTAGONIZES MYC TRANSCRIPTIONAL ACTIVITY
    AYER, DE
    KRETZNER, L
    EISENMAN, RN
    [J]. CELL, 1993, 72 (02) : 211 - 222
  • [5] A SWITCH FROM MYC-MAX TO MAD-MAX HETEROCOMPLEXES ACCOMPANIES MONOCYTE/MACROPHAGE DIFFERENTIATION
    AYER, DE
    EISENMAN, RN
    [J]. GENES & DEVELOPMENT, 1993, 7 (11) : 2110 - 2119
  • [6] The Max network gone mad
    Baudino, TA
    Cleveland, JL
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (03) : 691 - 702
  • [7] Inhibition of cell growth and apoptosis by inducible expression of the transcriptional repressor Mad1
    Bejarano, MT
    Albihn, A
    Cornvik, T
    Brijker, SO
    Asker, C
    Osorio, LM
    Henriksson, M
    [J]. EXPERIMENTAL CELL RESEARCH, 2000, 260 (01) : 61 - 72
  • [8] BERBERICH S, 1992, ONCOGENE, V7, P775
  • [9] BINDING OF MYC PROTEINS TO CANONICAL AND NONCANONICAL DNA-SEQUENCES
    BLACKWELL, TK
    HUANG, J
    MA, A
    KRETZNER, L
    ALT, FW
    EISENMAN, RN
    WEINTRAUB, H
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (09) : 5216 - 5224
  • [10] SEQUENCE-SPECIFIC DNA-BINDING BY THE C-MYC PROTEIN
    BLACKWELL, TK
    KRETZNER, L
    BLACKWOOD, EM
    EISENMAN, RN
    WEINTRAUB, H
    [J]. SCIENCE, 1990, 250 (4984) : 1149 - 1151