Numerical solution of fractional diffusion equation over a long time domain

被引:5
|
作者
Alavizadeh, S. R. [1 ]
Ghaini, F. M. Maalek [1 ]
机构
[1] Yazd Univ, Fac Math, Yazd, Iran
关键词
Fractional diffusion equation; Shifted Legendre polynomials; Rational Legendre functions; Caputo derivative; APPROXIMATION;
D O I
10.1016/j.amc.2015.04.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a method to compute approximate solutions to one dimensional fractional diffusion equation which requires solution for a long time domain. For this, we use a set of shifted Legendre polynomials for the space domain and a set of Legendre rational functions for the time domain. The unknown solution is approximated by using these sets of orthogonal functions with unknown coefficients and the fractional derivative of the approximate solution is represented by an operational matrix, resulting in a linear system with the unknown coefficients. Numerical examples are given to demonstrate the effectiveness of the method. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:240 / 250
页数:11
相关论文
共 50 条
  • [1] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [2] Stable numerical solution to a Cauchy problem for a time fractional diffusion equation
    Wei, T.
    Zhang, Z. Q.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 40 : 128 - 137
  • [3] The numerical solution for the time-fractional inverse problem of diffusion equation
    Shivanian, Elyas
    Jafarabadi, Ahmad
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 91 : 50 - 59
  • [4] A Numerical Method for Time Fractional Diffusion Equation
    Song, Guangzhen
    Zhao, Weijia
    Huang, Jianfei
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY, 2016, 60 : 877 - 881
  • [5] Numerical Solution for the Variable Order Time Fractional Diffusion Equation with Bernstein Polynomials
    Chen, Yiming
    Liu, Liqing
    Li, Xuan
    Sun, Yannan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 97 (01): : 81 - 100
  • [6] Numerical Solution of the Time-Fractional Sub-Diffusion Equation on an Unbounded Domain in Two-Dimensional Space
    Li, Hongwei
    Wu, Xiaonan
    Zhang, Jiwei
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 439 - 454
  • [7] Numerical solution of time fractional diffusion systems
    Burrage, Kevin
    Cardone, Angelamaria
    D'Ambrosio, Raffaele
    Paternoster, Beatrice
    APPLIED NUMERICAL MATHEMATICS, 2017, 116 : 82 - 94
  • [8] On the numerical solutions for the fractional diffusion equation
    Khader, M. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (06) : 2535 - 2542
  • [9] Numerical Solution for a Nonlinear Time-Space Fractional Convection-Diffusion Equation
    Basha, Merfat
    Anley, Eyaya Fekadie
    Dai, Binxiang
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (01):
  • [10] Numerical solution of space fractional diffusion equation using shifted Gegenbauer polynomials
    Issa, Kazeem
    Yisa, Babatunde M.
    Biazar, Jafar
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2022, 10 (02): : 431 - 444