Design of a compact CMOS-compatible photonic antenna by topological optimization

被引:15
作者
Pita, Julian L. [1 ]
Aldaya, Ivan [2 ,3 ]
Dainese, Paulo [2 ]
Hernandez-Figueroa, Hugo E. [1 ]
Gabrielli, Lucas H. [1 ]
机构
[1] Univ Campinas UNICAMP, Sch Elect & Comp Engn, BR-13083852 Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
[3] State Univ Sao Paulo UNESP, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
来源
OPTICS EXPRESS | 2018年 / 26卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
GRATING COUPLER; SILICON; NANOANTENNA;
D O I
10.1364/OE.26.002435
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonic antennas are critical in applications such as spectroscopy, photovoltaics, optical communications, holography, and sensors. In most of those applications, metallic antennas have been employed due to their reduced sizes. Nevertheless, compact metallic antennas suffer from high dissipative loss, wavelength-dependent radiation pattern, and they are difficult to integrate with CMOS technology. All-dielectric antennas have been proposed to overcome those disadvantages because, in contrast to metallic ones, they are CMOS-compatible, easier to integrate with typical silicon waveguides, and they generally present a broader wavelength range of operation. These advantages are achieved, however, at the expense of larger footprints that prevent dense integration and their use in massive phased arrays. In order to overcome this drawback, we employ topological optimization to design an all-dielectric compact antenna with vertical emission over a broad wavelength range. The fabricated device has a footprint of 1.78 mu m x 1.78 mu m and shows a shift in the direction of its main radiation lobe of only 4 degrees over wavelengths ranging from 1470 nm to 1550 nm and a coupling efficiency bandwidth broader than 150 nm. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:2435 / 2442
页数:8
相关论文
共 30 条
  • [11] Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy
    Hatab, Nahla A.
    Hsueh, Chun-Hway
    Gaddis, Abigail L.
    Retterer, Scott T.
    Li, Jia-Han
    Eres, Gyula
    Zhang, Zhenyu
    Gu, Baohua
    [J]. NANO LETTERS, 2010, 10 (12) : 4952 - 4955
  • [12] High-Efficiency Vertical Light Emission through a Compact Silicon Nanoantenna Array
    Huang, Haiyang
    Li, Hao
    Li, Wei
    Wu, Aimin
    Chen, Xin
    Zhu, Xuefeng
    Sheng, Zhen
    Zou, Shichang
    Wang, Xi
    Gan, Fuwan
    [J]. ACS PHOTONICS, 2016, 3 (03): : 324 - 328
  • [13] All-dielectric optical nanoantennas
    Krasnok, Alexander E.
    Miroshnichenko, Andrey E.
    Belov, Pavel A.
    Kivshar, Yuri S.
    [J]. OPTICS EXPRESS, 2012, 20 (18): : 20599 - 20604
  • [14] Liu N., 2011, C LAS EL OPT OPT SOC
  • [15] Breakthroughs in Photonics 2013: Advances in Nanoantennas
    Malheiros-Silveira, Gilliard N.
    Gabrielli, Lucas H.
    Chang-Hasnain, Connie J.
    Hernandez-Figueroa, Hugo E.
    [J]. IEEE PHOTONICS JOURNAL, 2014, 6 (02):
  • [16] Dielectric resonator antenna for applications in nanophotonics
    Malheiros-Silveira, Gilliard N.
    Wiederhecker, Gustavo S.
    Hernandez-Figueroa, Hugo E.
    [J]. OPTICS EXPRESS, 2013, 21 (01): : 1234 - 1239
  • [17] A Grating-Coupler-Enabled CMOS Photonics Platform
    Mekis, Attila
    Gloeckner, Steffen
    Masini, Gianlorenzo
    Narasimha, Adithyaram
    Pinguet, Thierry
    Sahni, Subal
    De Dobbelaere, Peter
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (03) : 597 - 608
  • [18] Michaels A, 2016, CONF LASER ELECTR
  • [19] Piggott AY, 2015, CONF LASER ELECTR
  • [20] Surface plasmon enhanced silicon solar cells
    Pillai, S.
    Catchpole, K. R.
    Trupke, T.
    Green, M. A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 101 (09)