FRACTIONAL INTEGRALS AND DERIVATIVES IN q-CALCULUS

被引:262
作者
Rajkovic, Predrag M. [1 ]
Marinkovic, Sladana D. [2 ]
Stankovic, Miomir S. [3 ]
机构
[1] Univ Nis, Dept Math, Fac Mech Engn, Nish, Serbia
[2] Univ Nis, Dept Math, Fac Elect Engn, Nish, Serbia
[3] Univ Nis, Dept Math, Fac Occupat Safety, Nish, Serbia
关键词
Basic hypergeometric functions; Fractional calculus; q-derivative; q-integral;
D O I
10.2298/AADM0701311R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the notions of the fractional q-integral and q-derivative by introducing variable lower limit of integration. We discuss some properties and their relations. Finally, we give a q-TAYLOR-like formula which includes fractional q-derivatives of the function.
引用
收藏
页码:311 / 323
页数:13
相关论文
共 11 条
[1]   CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
AGARWAL, RP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 :365-&
[2]   Q-ANALOGUES OF CAUCHYS FORMULAS [J].
ALSALAM, WA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (03) :616-&
[3]   SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
ALSALAM, WA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 :135-&
[4]  
ALSALAM WA, 1975, PAC J MATH, V60, P1
[5]  
Gasper G., 2004, ENCY MATH ITS APPL, V96
[6]  
Gauchman H, 2004, COMPUT MATH APPL, V47, P281, DOI [10.1016/S0898-1221(04)90025-9, 10.1016/S0898-1221(04)00012-4]
[7]  
HAHN W, 1981, BERICHTE MATH STAT S, V169
[8]  
Ismail MEH, 2003, J APPROX THEORY, V123, P125, DOI [10.1016/S0021-9045(03)00076-5, 10.1016/S0021-9045-00076-5]
[9]  
RAJKOVI P. M., 2002, MAT VESNIK, V54, P171
[10]  
STANKOVIC M., 2006, B ACAD SERBE SCI ART, V31, P137