Mean-value properties of real analytic functions

被引:9
作者
Lysik, Grzegorz [1 ,2 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw 10, Poland
[2] Jan Kochanowski Univ, Kielce, Poland
关键词
Mean-values; Polyharmonic functions; Real analytic functions; Pizzetti's formula; Heat equation;
D O I
10.1007/s00013-011-0336-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the Pizzetti formulas, i.e., expansions of the solid and spherical means of a function in terms of the radius of the ball or sphere, to the case of real analytic functions and to functions of Laplacian growth. We also give characterizations of these functions. As an application we give a characterization of solutions analytic in time of the initial value problem for the heat equation a, (t) u = Delta u in terms of holomorphic properties of the solid and/or spherical means of the initial data.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 18 条
[1]  
Aronszajn N., 1983, POLYHARMONIC FUNCTIO
[2]  
Boas R.P., 1954, Entire functions, V5
[3]   An extension of the Pizzetti formula for polyharmonic functions [J].
Bojanov, B .
ACTA MATHEMATICA HUNGARICA, 2001, 91 (1-2) :99-113
[4]   MEAN VALUE THEOREMS FOR POLYHARMONIC FUNCTIONS [J].
BRAMBLE, JH ;
PAYNE, LE .
AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2) :124-&
[5]  
Fichtenholz G. M., 1992, HOCHSCHULBUCHER MATH, VIII
[6]  
Friedman A., 1957, MICH MATH J, V4, P67
[7]  
GHERMANESCO M, 1934, B SOC MATH FRANCE, V62, P245
[8]  
Ghermanescu M, 1943, MATH ANN, V119, P288
[9]  
KoWALEVSKI S., 1875, J. Reine Angew. Math., V80, P1
[10]   On the mean value property for polyharmonic functions [J].
Lysik, G. .
ACTA MATHEMATICA HUNGARICA, 2011, 133 (1-2) :133-139