Symmetric arctic ranks of nonnegative matrices and their linear preservers

被引:1
作者
Beasley, LeRoy B. [1 ]
Song, Seok-Zun [2 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Jeju Natl Univ, Dept Math, Jeju, South Korea
基金
新加坡国家研究基金会;
关键词
Linear operator; perimeter; symmetric arctic rank; completely positive matrix; 15A86; 15A03; 15A04; OPERATORS;
D O I
10.1080/03081087.2017.1282931
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A rank one matrix can be factored as uv(t) for vectors u and v of appropriate orders. The perimeter of this rank one matrix is the number of nonzero entries in u plus the number of nonzero entries in v. A matrix of rank k is the sum of k rank one matrices, a rank one decomposition. The perimeter of a matrix A of rank k is the minimum over all rank one of A of the sums of perimeters of the rank one matrices. The arctic rank of a matrix is one half the perimeter. In this article, we characterize the linear operators that preserve the symmetric arctic ranks of nonnegative symmetric matrices.
引用
收藏
页码:2000 / 2010
页数:11
相关论文
共 6 条
[1]   BOOLEAN-RANK-PRESERVING OPERATORS AND BOOLEAN-RANK-1 SPACES [J].
BEASLEY, LB ;
PULLMAN, NJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 59 (JUN) :55-77
[2]   The arctic rank of a Boolean matrix [J].
Beasley, LeRoy B. ;
Guterman, Alexander E. ;
Shitov, Yaroslav .
JOURNAL OF ALGEBRA, 2015, 433 :168-182
[3]   Linear preserver problems [J].
Li, CK ;
Pierce, S .
AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (07) :591-605
[4]  
MARKHAM TL, 1971, PROC CAMB PHILOS S-M, V69, P53
[5]  
Pierce S., 1992, Linear Multilinear Algebra, V33, P1
[6]   LINEAR OPERATORS THAT PRESERVE PERIMETERS OF MATRICES OVER SEMIRINGS [J].
Song, Seok-Zun ;
Kang, Kyung-Tae ;
Beasley, LeRoy B. .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (01) :113-123