Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer

被引:148
作者
Akhoundi, Behnam [1 ]
Behravesh, Amir Hossein [1 ]
Saed, Arvin Bagheri [1 ]
机构
[1] Tarbiat Modares Univ, Fac Mech Engn, Addit Mfg Lab, Tehran, Iran
关键词
Additive manufacturing; fused deposition modeling; 3D printer; thermoplastic composites; continuous fiber; glass fiber yarn; PREDICTION; POLYMERS; BEHAVIOR;
D O I
10.1177/0731684418807300
中图分类号
TB33 [复合材料];
学科分类号
摘要
The main purpose of this research is to bolster mechanical properties of the parts, produced by an extrusion-based 3D printer, or fused deposition modeling machine, via increasing the content of continuous fiber yarn to its practical limit. In-melt continuous glass fiber yarn embedding was applied as a reliable and consistent method for simultaneous impregnation to produce continuous fiber-reinforced thermoplastic composites in the fused deposition modeling process. It is well known that the main weakness in the fused deposition modeling 3D printed products is their low strength compared to the manufactured ones by conventional methods such as injection molding and machining processes. This characteristic can be related to both inherent weakness of thermoplastic materials and poor adhesion between the deposited rasters and the layers. Although various attempts have been performed to tackle this issue, it is widely believed that using continuous fibers is the most effective method to serve this purpose if a reliable and consistent method is implemented. Since the mechanical properties of continuous fiber-reinforced composites directly depend on the content of fiber volume, maximizing the fiber content as well as producing an integrated part was assumed as the main objective. In this work, an analysis of various patterns of raster deposition was conducted, followed by the experiments and verification. The effective parameters on the fiber yarn volume, such as fiber yarn diameter, fiber yarn laying pattern, extrusion width, layer height, and flow percentage, were investigated and their optimal values were reported. The attained experimental results showed that, for polylactic acid-glass fiber yarn reinforced composite, with the extrusion width of 0.3 mm, the layer heights of 0.22 mm, flow percentage of 0.43, and the rectangular laying pattern, approximately 50% fiber-volume content can be achieved which resulted in tensile yield strength and modulus of 478 MPa and 29.4 GPa, respectively. There was an excellent agreement between these experimental results and predicted theoretically values by rule of mixture.
引用
收藏
页码:99 / 116
页数:18
相关论文
共 29 条
[1]   Anisotropic material properties of fused deposition modeling ABS [J].
Ahn, SH ;
Montero, M ;
Odell, D ;
Roundy, S ;
Wright, PK .
RAPID PROTOTYPING JOURNAL, 2002, 8 (04) :248-257
[2]   Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic [J].
Bettini, Paolo ;
Alitta, Gianluca ;
Sala, Giuseppe ;
Di Landro, Luca .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (02) :843-848
[3]   Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques [J].
Dawoud, Michael ;
Taha, Iman ;
Ebeid, Samy J. .
JOURNAL OF MANUFACTURING PROCESSES, 2016, 21 :39-45
[4]   Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts [J].
Domingo-Espin, Miquel ;
Puigoriol-Forcada, Josep M. ;
Garcia-Granada, Andres-Amador ;
Lluma, Jordi ;
Borros, Salvador ;
Reyes, Guillermo .
MATERIALS & DESIGN, 2015, 83 :670-677
[5]   Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing [J].
Fernandez-Vicente, Miguel ;
Calle, Wilson ;
Ferrandiz, Santiago ;
Conejero, Andres .
3D PRINTING AND ADDITIVE MANUFACTURING, 2016, 3 (03) :183-192
[6]   Fused-filament 3D printing (3DP) for fabrication of tablets [J].
Goyanes, Alvaro ;
Buanz, Asma B. M. ;
Basit, Abdul W. ;
Gaisford, Simon .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2014, 476 (1-2) :88-92
[7]   Additive manufacturing: Technology, applications and research needs [J].
Guo N. ;
Leu M.C. .
Frontiers of Mechanical Engineering, 2013, 8 (3) :215-243
[8]   INVITED REVIEW-APPLICATIONS FOR 3D PRINTERS IN VETERINARY MEDICINE [J].
Hespel, Adrien-Maxence ;
Wilhite, Ray ;
Hudson, Judith .
VETERINARY RADIOLOGY & ULTRASOUND, 2014, 55 (04) :347-358
[9]  
Hopkinson N, 2006, RAPID MANUFACTURING: AN INDUSTRIAL REVOLUTION FOR THE DIGITAL AGE, P1
[10]   Printing Teddy Bears: A Technique for 3D Printing of Soft Interactive Objects [J].
Hudson, Scott E. .
32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), 2014, :459-468