Phase-field analyses for Y123 crystal growth

被引:0
作者
Egami, A [1 ]
Nakamura, Y [1 ]
Izumi, T [1 ]
Shiohara, Y [1 ]
机构
[1] ISTEC, Superconduct Res Lab, Int Superconduct Technol Ctr, Koto Ku, Tokyo 1350062, Japan
来源
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS | 2001年 / 357卷
关键词
phase field; facet; implicit; crystal growth; anisotropy;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
A phase-field evolution equation (a kind of time dependent Ginzburg-Landau equation), in which order parameter (phi) transition in width restricted within a unit grid, was solved using an implicit finite difference method. The direct implicit scheme would have an ability to correspond to a long-range order parameter correlation, which appeared around a phase transition. When the transition width is restricted within a unit grid, a skew directional finite difference is necessary to obtain an isotropic growth rate. Using these schemes, an isotropic growth shape was obtained for a single composition system with a latent heat free condition. In the case of a large latent heat condition, which is the case for Y123 crystal growth, we could obtain a faceted growth shape without using any anisotropic parameters. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1411 / 1415
页数:5
相关论文
共 50 条
[21]   Derivation of phase-field model for dendritic growth [J].
Wang, J ;
Sun, JL ;
Zhang, JT .
MECHANICS AND MATERIAL ENGINEERING FOR SCIENCE AND EXPERIMENTS, 2001, :347-350
[22]   Phase-field Modeling and Simulations of Dendrite Growth [J].
Takaki, Tomohiro .
ISIJ INTERNATIONAL, 2014, 54 (02) :437-444
[23]   Anisotropy of the thermal conductivity of melt-textured Y123/Y211 composites [J].
Jezowski, A ;
Rogacki, K ;
Puig, T ;
Obradors, X .
PHYSICA B, 2000, 284 :1015-1016
[24]   Phase field modeling of crystal growth morphology [J].
Sekerka, Robert E. .
PERSPECTIVES ON INORGANIC, ORGANIC, AND BIOLOGICAL CRYSTAL GROWTH: FROM FUNDAMENTALS TO APPLICATIONS, 2007, 916 :176-190
[25]   Influence of the Y211 phase on anisotropic transport properties and vortex dynamics of the melt-textured Y123/Y211 composites [J].
Mucha, J. ;
Rogacki, K. ;
Misiorek, H. ;
Jezowski, A. ;
Wisniewski, A. ;
Puzniak, R. .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 :S1009-S1010
[26]   Phase-field simulation of dendritic growth in a shear flow [J].
Tonhardt, R ;
Amberg, G .
JOURNAL OF CRYSTAL GROWTH, 1998, 194 (3-4) :406-425
[27]   Prediction of Flow Effect on Crystal Growth of Semi-Crystalline Polymers Using a Multi-Scale Phase-Field Approach [J].
Wang, Xiaodong ;
Ouyang, Jie ;
Liu, Ying .
POLYMERS, 2017, 9 (12)
[28]   Explicit temperature coupling in phase-field crystal models of solidification [J].
Punke, Maik ;
Wise, Steven M. ;
Voigt, Axel ;
Salvalaglio, Marco .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2022, 30 (07)
[29]   Thermodynamic consistency and fast dynamics in phase-field crystal modeling [J].
Cheng, M. ;
Kundin, J. ;
Li, D. ;
Emmerich, H. .
PHILOSOPHICAL MAGAZINE LETTERS, 2012, 92 (10) :517-526
[30]   Numerical simulation of polymer crystal growth under flow field using a coupled phase-field and lattice Boltzmann method [J].
Li, Qiang ;
Zhang, Tong ;
Yuan, Jinyun .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 387 (387)