An Inverse Boundary Value Problem for a Semilinear Wave Equation on Lorentzian Manifolds

被引:21
作者
Hintz, Peter [1 ]
Uhlmann, Gunther [2 ,3 ]
Zhai, Jian [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
[3] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R China
关键词
ELLIPTIC-EQUATIONS; RECONSTRUCTION;
D O I
10.1093/imrn/rnab088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an inverse boundary value problem for a semilinear wave equation on a time-dependent Lorentzian manifold with time-like boundary. The time-dependent coefficients of the nonlinear terms can be recovered in the interior from the knowledge of the Neumann-to-Dirichlet map. Either distorted plane waves or Gaussian beams can be used to derive uniqueness.
引用
收藏
页码:13181 / 13211
页数:31
相关论文
共 41 条
[1]  
ASSYLBEKOV Y, 2020, IN PRESS
[2]   SENSITIVITY ANALYSIS OF AN INVERSE PROBLEM FOR THE WAVE EQUATION WITH CAUSTICS [J].
Bao, Gang ;
Zhang, Hai .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (04) :953-981
[3]  
Bar C., 2007, Wave equations on Lorentzian manifolds and quantization, V3
[4]  
Belishev M. I., 1996, J MATH SCI-U TOKYO, V79, P1172, DOI DOI 10.1007/BF02362883
[5]   Reconstruction for the coefficients of a quasilinear elliptic partial differential equation [J].
Carstea, Catalin, I ;
Nakamura, Gen ;
Vashisth, Manmohan .
APPLIED MATHEMATICS LETTERS, 2019, 98 :121-127
[6]  
Chen X., 2019, ARXIV PREPRINT ARXIV
[7]  
Choquet-Bruhat Y., 2008, GEN RELATIVITY EINST
[8]  
DAFERMOS CM, 1985, ARCH RATION MECH AN, V87, P267
[9]   Nonlinear interaction of waves in elastodynamics and an inverse problem [J].
de Hoop, Maarten ;
Uhlmann, Gunther ;
Wang, Yiran .
MATHEMATISCHE ANNALEN, 2020, 376 (1-2) :765-795
[10]   Nonlinear responses from the interaction of two progressing waves at an interface [J].
de Hoop, Maarten ;
Uhlmann, Gunther ;
Wang, Yiran .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (02) :347-363