On the rational approximation of Markov functions, with applications to the computation of Markov functions of Toeplitz matrices

被引:3
作者
Beckermann, Bernhard [1 ]
Bisch, Joanna [1 ]
Luce, Robert [2 ]
机构
[1] Univ Lille, Dept Math, Lab Paul Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
[2] Gurobi Optimizat LLC, 9450 SW Gemini Dr, Beaverton, OR USA
关键词
Matrix function; Toeplitz matrices; Markov function; Rational interpolation; Positive Thiele continued fractions; DISPLACEMENT STRUCTURE;
D O I
10.1007/s11075-022-01256-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the problem of approximating the matrix function f(A) by r(A), with f a Markov function, r a rational interpolant of f, and A a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interpolation error 1 - r/f on the spectral interval of A. By minimizing this upper bound over all interpolation points, we obtain a new, simple, and sharp a priori bound for the relative interpolation error. We then consider three different approaches of representing and computing the rational interpolant r. Theoretical and numerical evidence is given that any of these methods for a scalar argument allows to achieve high precision, even in the presence of finite precision arithmetic. We finally investigate the problem of efficiently evaluating r(A), where it turns out that the relative error for a matrix argument is only small if we use a partial fraction decomposition for r following Antoulas and Mayo. An important role is played by a new stopping criterion which ensures to automatically find the degree of r leading to a small error, even in presence of finite precision arithmetic.
引用
收藏
页码:109 / 144
页数:36
相关论文
共 60 条
  • [1] Abramowitz M., 1964, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
  • [2] ACHIESER N. I., 1990, ELEMENTS THEORY ELLI
  • [3] [Anonymous], 2013, B BECKERMANN OPTIMAL
  • [4] Badea C., 2013, HDB LINEAR ALGEBR, P613
  • [5] Baker G. A., 1996, Pade Approximants: Encyclopedia of Mathematics and It's Applications, V59
  • [6] Bounds on the Singular Values of Matrices with Displacement Structure
    Beckermann, Bernhard
    Townsend, Alex
    [J]. SIAM REVIEW, 2019, 61 (02) : 319 - 344
  • [7] ERROR ESTIMATES AND EVALUATION OF MATRIX FUNCTIONS VIA THE FABER TRANSFORM
    Beckermann, Bernhard
    Reichel, Lothar
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) : 3849 - 3883
  • [8] Benzi Michele, 2020, GAMM - Mitteilungen, V43, DOI 10.1002/gamm.202000012
  • [9] Berrut J. P., 2005, INT SER NUMER MATH, P27, DOI DOI 10.1007/3-7643-7356-3_3
  • [10] Bisch, 2021, THESIS U LILLE FRANC