Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations

被引:98
作者
Ehlmann, B. L. [1 ,2 ]
Edgett, K. S. [3 ]
Sutter, B. [4 ,5 ]
Achilles, C. N. [6 ]
Litvak, M. L. [7 ]
Lapotre, M. G. A. [1 ]
Sullivan, R. [8 ]
Fraeman, A. A. [2 ]
Arvidson, R. E. [9 ]
Blake, D. F. [10 ]
Bridges, N. T. [11 ]
Conrad, P. G. [12 ]
Cousin, A. [13 ]
Downs, R. T. [6 ]
Gabriel, T. S. J. [14 ]
Gellert, R. [15 ]
Hamilton, V. E. [16 ]
Hardgrove, C. [14 ]
Johnson, J. R. [11 ]
Kuhn, S. [2 ]
Mahaffy, P. R. [12 ]
Maurice, S. [13 ,17 ]
McHenry, M. [2 ]
Meslin, P-Y [13 ]
Ming, D. W. [5 ]
Minitti, M. E. [11 ]
Morookian, J. M. [2 ]
Morris, R. V. [5 ]
O'Connell-Cooper, C. D. [18 ]
Pinet, P. C. [13 ,17 ]
Rowland, S. K. [19 ]
Schroeder, S. [20 ,21 ]
Siebach, K. L. [22 ]
Stein, N. T. [1 ]
Thompson, L. M. [17 ]
Vaniman, D. T. [23 ]
Vasavada, A. R. [2 ]
Wellington, D. F. [13 ,14 ]
Wiens, R. C. [24 ]
Yen, A. S. [2 ]
机构
[1] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[2] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[3] Malin Space Sci Syst, San Diego, CA USA
[4] Jacobs Technol, Houston, TX USA
[5] NASA, Johnson Space Ctr, Houston, TX USA
[6] Univ Arizona, Dept Geosci, Tucson, AZ USA
[7] RAS, Space Res Inst, Moscow, Russia
[8] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY USA
[9] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA
[10] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA
[11] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA
[12] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[13] Univ Toulouse, Inst Rech Astrophys & Planetol, CNRS, Toulouse, France
[14] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
[15] Univ Guelph, Guelph Waterloo Phys Inst, Guelph, ON, Canada
[16] Southwest Res Inst, Dept Space Studies, Boulder, CO USA
[17] Univ Toulouse, Observ Midi Pyrenees, Toulouse, France
[18] Univ New Brunswick, Planetary & Space Sci Ctr, Fredericton, NB, Canada
[19] Univ Hawaii Manoa, Dept Geol & Geophys, Honolulu, HI 96822 USA
[20] Inst Rech Astrophys & Planetol, Toulouse, France
[21] German Aerosp Ctr DLR, Inst Opt Sensorsyst, Berlin, Germany
[22] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA
[23] Planetary Sci Inst, Tucson, AZ USA
[24] Los Alamos Natl Lab, Los Alamos, NM USA
关键词
Mars soils; sand dunes; dust; amorphous phase; volatiles; grain size; CHEMCAM INSTRUMENT SUITE; X-RAY SPECTROMETER; MERIDIANI-PLANUM; MARTIAN REGOLITH; YELLOWKNIFE BAY; CLAY-MINERALS; SCIENCE; ROCKS; WATER; STRATIGRAPHY;
D O I
10.1002/2017JE005267
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (similar to 45-500m) with 6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35%15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40m; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O. Plain Language Summary The Bagnold dune field is an active sand field with moving dunes and sits between the landing site of the Curiosity rover and rocks of interest higher up on Mount Sharp. When passing through the dune field, we used all of Curiosity's instruments to measure the chemistry, mineralogy, and grain size of sands in the Bagnold dune field in order to figure out where they came from, how the sands are transported, and what volatile materials (like water) lie within Martian soils. We found that the Bagnold sand dunes are very well sorted; no dusty materials are found within them, in stark contrast to soils seen previously with Curiosity and with rovers at other landing sites. We found that the coarser sand grains are enriched in the volcanic minerals olivine and pyroxene, confirming a prediction from orbit that wind-related activity seems to concentrate these phases. We also found that the dunes were much lower in water and other volatile elements like sulfur and chlorine versus all previous Mars soils. Using a combination of the rover's sieving system and chemical measurement tools, we figured out that two types of materials host water. In the first type of material, common in these sands, water is low in abundance (similar to 1%), very tightly bound to the grains, and is not released until temperatures >200 degrees C. In the second type of material, water is higher in abundance (2%) and more easily released by heating. Sieved water-bearing fine materials may be a useful resource for human explorers.
引用
收藏
页码:2510 / 2543
页数:34
相关论文
共 129 条
[1]   Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars [J].
Achilles, C. N. ;
Downs, R. T. ;
Ming, D. W. ;
Rampe, E. B. ;
Morris, R. V. ;
Treiman, A. H. ;
Morrison, S. M. ;
Blake, D. F. ;
Vaniman, D. T. ;
Ewing, R. C. ;
Chipera, S. J. ;
Yen, A. S. ;
Bristow, T. F. ;
Ehlmann, B. L. ;
Gellert, R. ;
Hazen, R. M. ;
Fendrich, K. V. ;
Craig, P. I. ;
Grotzinger, J. P. ;
Des Marais, D. J. ;
Farmer, J. D. ;
Sarrazin, P. C. ;
Morookian, J. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2017, 122 (11) :2344-2361
[2]   ANALYSIS OF WATER IN THE MARTIAN REGOLITH [J].
ANDERSON, DM ;
TICE, AR .
JOURNAL OF MOLECULAR EVOLUTION, 1979, 14 (1-3) :33-38
[3]  
Anderson R.B., 2010, Mars, V5, P76, DOI [10.1555/mars.2010.0004, DOI 10.1555/MARS.2010.0004]
[4]   Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System [J].
Anderson, R. C. ;
Jandura, L. ;
Okon, A. B. ;
Sunshine, D. ;
Roumeliotis, C. ;
Beegle, L. W. ;
Hurowitz, J. ;
Kennedy, B. ;
Limonadi, D. ;
McCloskey, S. ;
Robinson, M. ;
Seybold, C. ;
Brown, K. .
SPACE SCIENCE REVIEWS, 2012, 170 (1-4) :57-75
[5]   ChemCam results from the Shaler outcrop in Gale crater, Mars [J].
Anderson, Ryan ;
Bridges, J. C. ;
Williams, A. ;
Edgar, L. ;
Ollila, A. ;
Williams, J. ;
Nachon, M. ;
Mangold, N. ;
Fisk, M. ;
Schieber, J. ;
Gupta, S. ;
Dromart, G. ;
Wiens, R. ;
Le Mouelic, S. ;
Forni, O. ;
Lanza, N. ;
Mezzacappa, A. ;
Sautter, V. ;
Blaney, D. ;
Clark, B. ;
Clegg, S. ;
Gasnault, O. ;
Lasue, J. ;
Leveille, R. ;
Lewin, E. ;
Lewis, K. W. ;
Maurice, S. ;
Newsom, H. ;
Schwenzer, S. P. ;
Vaniman, D. .
ICARUS, 2015, 249 :2-21
[6]  
[Anonymous], AEOLIAN SALTATION ON
[7]  
[Anonymous], 2015, Curiosity's Robotic Arm-Mounted Mars Hand Lens Imager (MAHLI): Characterization and Calibration Status: MSL MAHLI Technical Report 0001, DOI [DOI 10.13140/RG.2.1.3798.5447, 10.13140/RG.2.1.3798.5447]
[8]  
[Anonymous], MARS GROUND TRUTHING
[9]  
[Anonymous], THESIS
[10]   Localization and physical property experiments conducted by opportunity at Meridiani Planum [J].
Arvidson, RE ;
Anderson, RC ;
Bartlett, P ;
Bell, JF ;
Christensen, PR ;
Chu, P ;
Davis, K ;
Ehlmann, BL ;
Golombek, MP ;
Gorevan, S ;
Guinness, EA ;
Haldemann, AFC ;
Herkenhoff, KE ;
Landis, G ;
Li, R ;
Lindemann, R ;
Ming, DW ;
Myrick, T ;
Parker, T ;
Richter, L ;
Seelos, FP ;
Soderblom, LA ;
Squyres, SW ;
Sullivan, RJ ;
Wilson, J .
SCIENCE, 2004, 306 (5702) :1730-1733