Some results on change-point detection in cross-sectional dependence of multivariate data with changes in marginal distributions

被引:1
作者
Rohmer, Tom [1 ,2 ]
机构
[1] Univ Bordeaux, ISPED, 146 Rue Leo Saignat, F-33000 Bordeaux, France
[2] INSERM, Ctr Inserm U1219, 146 Rue Leo Saignat, F-33000 Bordeaux, France
关键词
Non-parametric tests; Sequential empirical copula process; Monte Carlo experiments; TIME-SERIES; TESTS;
D O I
10.1016/j.spl.2016.06.026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A non-parametric test is proposed for detecting changes in the dependence between the components of multivariate data, when changes in marginal distributions occur at known instants. Monte Carlo simulations have been carried out to illustrate the performance of the procedure. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 13 条
  • [1] [Anonymous], 2013, R LANG ENV STAT COMP
  • [3] Detecting changes in cross-sectional dependence in multivariate time series
    Buecher, Axel
    Kojadinovic, Ivan
    Rohmer, Tom
    Segers, Johan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 132 : 111 - 128
  • [4] Csorgo M., 1997, Limit Theorems in Change-Point Analysis
  • [5] Deheuvels P., 1979, Bull. Acad. R. Belg., V65, P274, DOI DOI 10.3406/BARB.1979.58521
  • [6] Hofert M., 2015, copula: Multivariate Dependence with Copulas
  • [7] Nonparametric tests for change-point detection a la Gombay and Horvath
    Holmes, Mark
    Kojadinovic, Ivan
    Quessy, Jean-Francois
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 115 : 16 - 32
  • [8] Testing for distributional change in time series
    Inoue, A
    [J]. ECONOMETRIC THEORY, 2001, 17 (01) : 156 - 187
  • [9] Large-sample tests of extreme-value dependence for multivariate copulas
    Kojadinovic, Ivan
    Segers, Johan
    Yan, Jun
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (04): : 703 - 720
  • [10] Saklar A., 1959, FONCTIONS REPARTITIO, V8, P229