Ca2+ triggers a novel clathrin-independent but actin-dependent fast endocytosis in pancreatic beta cells

被引:32
作者
He, Zixuan [1 ]
Fan, Junmei [2 ,3 ]
Kang, Lijun [2 ,3 ]
Lu, Jingze [1 ]
Xue, Yanhong [1 ]
Xu, Pingyong [1 ]
Xu, Tao [1 ,2 ,3 ]
Chen, Liangyi [1 ]
机构
[1] Chinese Acad Sci, Inst Biophys, Natl Key Lab Biomacromol, Beijing 100101, Peoples R China
[2] Huazhong Univ Sci & Technol, Joint Lab, Coll Life Sci & Technol, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Inst Biophys, Coll Life Sci & Technol, Wuhan 430074, Peoples R China
关键词
actin; Ca2+](i); clathrin-independent endocytosis;
D O I
10.1111/j.1600-0854.2008.00730.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The existence of clathrin-independent recycling of secretory vesicles has been controversial. By combining patch-clamp capacitance recording, optical methods and specific molecular interventions, we dissect two types of mechanistically different endocytosis in pancreatic beta cells, both of which require GTP and dynamin. The fast one is a novel clathrin-independent but actin-dependent endocytosis that is triggered by high cytoplasmic Ca2+ concentration ([Ca2+](i)). Large fluorescent dextran (10 nm in diameter) was able to be internalized by this pathway, indicating that it was not likely to be 'kiss and run'. The slow endocytosis is a clathrin-dependent process in which actin plays a complementary role. For the first time, we show that the rate constants for both types of endocytosis exhibit supralinear dependence on increase in [Ca2+](i). Compared with the slow endocytosis, higher [Ca2+](i) level was required to fully accelerate the fast one, indicative of distinct Ca2+ sensors for different endocytosis. In the end, we show that physiologically relevant stimulation induces clathrin-independent endocytosis in intact beta cells, implying that it may contribute to the normal recycling of secretory vesicles in vivo.
引用
收藏
页码:910 / 923
页数:14
相关论文
共 58 条
[1]   High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism [J].
Alés, E ;
Tabares, L ;
Poyato, JM ;
Valero, V ;
Lindau, M ;
de Toledo, GA .
NATURE CELL BIOLOGY, 1999, 1 (01) :40-44
[2]   Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis [J].
Anggono, Victor ;
Smillie, Karen J. ;
Graham, Mark E. ;
Valova, Valentina A. ;
Cousin, Michael A. ;
Robinson, Phillip J. .
NATURE NEUROSCIENCE, 2006, 9 (06) :752-760
[3]   Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells [J].
Artalejo, CR ;
Elhamdani, A ;
Palfrey, HC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :6358-6363
[4]   Calmodulin is the divalent cation receptor for rapid endocytosis, but not exocytosis, in adrenal chromaffin cells [J].
Artalejo, CR ;
Elhamdani, A ;
Palfrey, HC .
NEURON, 1996, 16 (01) :195-205
[5]   RAPID ENDOCYTOSIS COUPLED TO EXOCYTOSIS IN ADRENAL CHROMAFFIN CELLS INVOLVES CA2+, GTP, AND DYNAMIN BUT NOT CLATHRIN [J].
ARTALEJO, CR ;
HENLEY, JR ;
MCNIVEN, MA ;
PALFREY, CH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8328-8332
[6]   Mapping of Eps15 domains involved in its targeting to clathrin-coated pits [J].
Benmerah, A ;
Poupon, V ;
Cerf-Bensussan, N ;
Dautry-Varsat, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (05) :3288-3295
[7]   Calcium dependence of exocytosis and endocytosis at the Cochlear inner hair cell afferent synapse [J].
Beutner, D ;
Voets, T ;
Neher, E ;
Moser, T .
NEURON, 2001, 29 (03) :681-690
[8]   Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic β-cells [J].
Braun, M ;
Wendt, A ;
Birnir, B ;
Broman, J ;
Eliasson, L ;
Galvanovskis, J ;
Gromada, J ;
Mulder, H ;
Rorsman, P .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 123 (03) :191-204
[9]   Differential distribution of dynamin isoforms in mammalian cells [J].
Cao, H ;
Garcia, F ;
McNiven, MA .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (09) :2595-2609
[10]   Regulated portals of entry into the cell [J].
Conner, SD ;
Schmid, SL .
NATURE, 2003, 422 (6927) :37-44