Positive Solutions for a Fractional Differential Equation with Sequential Derivatives and Nonlocal Boundary Conditions

被引:5
作者
Tudorache, Alexandru [1 ]
Luca, Rodica [2 ]
机构
[1] Gh Asachi Tech Univ, Dept Comp Sci & Engn, Iasi 700050, Romania
[2] Gh Asachi Tech Univ, Dept Math, Iasi 700506, Romania
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 09期
关键词
Riemann-Liouville fractional differential equation; nonlocal boundary conditions; sign-changing functions; singular functions; positive solutions;
D O I
10.3390/sym14091779
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the existence of positive solutions for a Riemann-Liouville fractional differential equation with sequential derivatives, a positive parameter and a sign-changing singular nonlinearity, subject to nonlocal boundary conditions containing varied fractional derivatives and general Riemann-Stieltjes integrals. We also present the associated Green functions and some of their properties. In the proof of the main results, we apply the Guo-Krasnosel'skii fixed point theorem. Two examples are finally given that illustrate our results.
引用
收藏
页数:12
相关论文
共 16 条
  • [1] Positive Solutions for a Semipositone Singular Riemann-Liouville Fractional Differential Problem
    Agarwal, Ravi P.
    Luca, Rodica
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (7-8) : 823 - 831
  • [2] Ahmad B., 2017, HADAMARD TYPE FRACTI
  • [3] Baleanu D., 2012, FRACTIONAL CALCULUS, DOI [10.1142/8180, DOI 10.1142/8180]
  • [4] Das S., 2008, Functional Fractional Calculus for System Identification and Controls
  • [5] Guo D., 1988, NONLINEAR PROBLEMS A
  • [6] Existence of positive solutions for a singular fractional boundary value problem
    Henderson, Johnny
    Luca, Rodica
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (01): : 99 - 114
  • [7] Positive solutions for a system of semipositone coupled fractional boundary value problems
    Henderson, Johnny
    Luca, Rodica
    [J]. BOUNDARY VALUE PROBLEMS, 2016,
  • [8] Kilbas A.A., 2006, THEORY APPL FRACTION, VVolume 204
  • [9] Klafter J., 2011, Fractional Dynamics: Recent Advances, DOI 10.1142/8087
  • [10] Podlubny I., 1999, Fractional Differential Equations