Fractal brain dynamics: from Mandelbrot to marmosets

被引:2
|
作者
Roisen, Douglas A.
Shew, Woodrow L.
机构
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2020年 / 598卷 / 08期
基金
美国国家科学基金会;
关键词
criticality; fractal; lateral geniculate nucleus; population coupling; visual cortex;
D O I
10.1113/JP279556
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
[No abstract available]
引用
收藏
页码:1425 / 1426
页数:2
相关论文
共 50 条
  • [1] A brief note on fractal dynamics of fractional Mandelbrot sets
    Wang, Yupin
    Li, Xiaodi
    Wang, Da
    Liu, Shutang
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 432
  • [2] FRACTAL PROPERTIES OF THE GENERALIZED MANDELBROT SET WITH COMPLEX EXPONENT
    Liu, Shuai
    Xu, Xiyu
    Srivastava, Gautam
    Srivastava, Hari M.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (04)
  • [3] The Mandelbrot set and the fractal nature of light, the Universe, and everything
    Gardi, L.
    NATURE OF LIGHT: WHAT ARE PHOTONS? V, 2013, 8832
  • [4] Determination of the fractal scaling parameter from simulated fractal-regular surface profiles based on the Weierstrass-Mandelbrot function
    Wang, Shao
    Shen, Ji
    Chan, Wai Kin
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2007, 129 (04): : 952 - 956
  • [5] The 100th anniversary of fractal geometry: From Julia and Fatou through Hausdorff and Besicovitch to Mandelbrot
    Vdovina, G. M.
    Trubetskov, D., I
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2020, 28 (02): : 208 - 222
  • [6] Fractal structures of the non-boundary region of the generalized Mandelbrot set
    王兴元
    ProgressinNaturalScience, 2001, (09) : 55 - 62+83
  • [7] Fractal structures of the non-boundary region of the generalized Mandelbrot set
    Wang, XY
    PROGRESS IN NATURAL SCIENCE, 2001, 11 (09) : 693 - 700
  • [8] Fractal spike dynamics and neuronal coupling in the primate visual system
    Munn, Brandon
    Zeater, Natalie
    Pietersen, Alexander N.
    Solomon, Samuel G.
    Cheong, Soon Keen
    Martin, Paul R.
    Gong, Pulin
    JOURNAL OF PHYSIOLOGY-LONDON, 2020, 598 (08): : 1551 - 1571
  • [9] Fractal dynamics of geomagnetic storms
    Zaourar, Naima
    Hamoudi, Mohamed
    Holschneider, Matthias
    Mandea, Mioara
    ARABIAN JOURNAL OF GEOSCIENCES, 2013, 6 (06) : 1693 - 1702
  • [10] Fractal patterns from the dynamics of combined polynomial root finding methods
    Gdawiec, Krzysztof
    NONLINEAR DYNAMICS, 2017, 90 (04) : 2457 - 2479