Summability of Fourier-Laplace series with the method of lacunary arithmetical means at Lebesgue points

被引:4
作者
Dai, F [1 ]
Wang, KY [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
来源
ACTA MATHEMATICA SINICA-ENGLISH SERIES | 2001年 / 17卷 / 03期
关键词
convergence; Fourier-Laplace series; spherical harmonics; Lebesgue point;
D O I
10.1007/PL00011624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Sigma (n-1) be the unit sphere in the n-dimensional Euclidean space R-n. For a function f is an element of L(Sigma (n-1)) denote by sigma (delta)(N)(f) the Cesaro means of order delta of the Fourier-Laplace series of f. The special value lambda := n-2/2 of delta is known as the critical index. In the case when n is even, this paper proves the existence of the `rare' sequence {nk} such that the summability 1\N Sigma (N)(K=1) sigma (lambda)(nk) (f)(x) --> f(x), N --> infinity takes place at each Lebesgue point satisfying some antipole conditions.
引用
收藏
页码:489 / 496
页数:8
相关论文
共 8 条