A Hybrid Approach for Aspect-Based Sentiment Analysis Using Deep Contextual Word Embeddings and Hierarchical Attention

被引:39
作者
Trusca, Maria Mihaela [1 ]
Wassenberg, Daan [2 ]
Frasincar, Flavius [2 ]
Dekker, Rommert [2 ]
机构
[1] Bucharest Univ Econ Studies, Bucharest 010374, Romania
[2] Erasmus Univ, Burgemeester Oudlaan 50, NL-3062 PA Rotterdam, Netherlands
来源
WEB ENGINEERING, ICWE 2020 | 2020年 / 12128卷
关键词
Multi-hop LCR-ROT; Hierarchical attention; Contextual word embeddings;
D O I
10.1007/978-3-030-50578-3_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Web has become the main platform where people express their opinions about entities of interest and their associated aspects. Aspect-Based Sentiment Analysis (ABSA) aims to automatically compute the sentiment towards these aspects from opinionated text. In this paper we extend the state-of-the-art Hybrid Approach for Aspect-Based Sentiment Analysis (HAABSA) method in two directions. First we replace the non-contextual word embeddings with deep contextual word embeddings in order to better cope with the word semantics in a given text. Second, we use hierarchical attention by adding an extra attention layer to the HAABSA high-level representations in order to increase the method flexibility in modeling the input data. Using two standard datasets (SemEval 2015 and SemEval 2016) we show that the proposed extensions improve the accuracy of the built model for ABSA.
引用
收藏
页码:365 / 380
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 2013, NIPS
[2]  
[Anonymous], 2018, LNCS, DOI DOI 10.1007/978-3-319-93417-4_39
[3]  
Bergstra J., 2011, Advances in Neural Information Processing Systems, V24, P2546
[4]  
Bojanowski P., 2017, Transactions of the Association for Computational Linguistics, V5, P135, DOI [10.1162/tacla00051, DOI 10.1162/TACL_A_00051, DOI 10.1162/TACLA00051]
[5]  
Cambria E, 2018, AAAI CONF ARTIF INTE, P1795
[6]  
Cambria Erik., 2015, Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), P647, DOI DOI 10.18653/V1/S15-2108
[7]  
Devlin J., 2018, ARXIV
[8]  
Do B.T., 2018, PROC 31 INT FLORIDA, P259
[9]  
He R., 2018, P 27 INT C COMPUTATI, P1121, DOI DOI 10.18653/V1/P18-2092
[10]  
He RD, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P579