An algorithm for image restoration with mixed noise using total variation regularization

被引:8
作者
Cong Thang Pham [1 ,2 ]
Gamard, Guilhem [1 ]
Kopylov, Andrei [3 ]
Thi Thu Thao Tran [3 ,4 ]
机构
[1] Natl Res Univ Higher Sch Econ, Fac Comp Sci, Moscow, Russia
[2] Univ Sci & Technol, Univ Da Nang, Da Nang, Vietnam
[3] Tula State Univ, Inst Appl Math & Comp Sci, Tula, Russia
[4] Univ Econ, Univ Da Nang, Da Nang, Vietnam
关键词
Image denoising; Gaussian noise; Poisson noise; total variation regularization; mixed noise distribution; gradient flow; EM APPROACH; MODEL;
D O I
10.3906/elk-1803-100
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present here an effective scheme for image denoising based on total variation regularization. The proposed scheme allows to efficiently remove Poisson noise as well as Gaussian noise simultaneously with the help of a new kind of data fidelity term, suitable for the mixed Poisson-Gaussian noise model. The results show that the algorithm corresponding to our new scheme outperforms the existing methods for mixed Poisson-Gaussian noise removal.
引用
收藏
页码:2831 / +
页数:20
相关论文
共 26 条
[1]  
[Anonymous], IMAGE PROCESSING ANA
[2]  
[Anonymous], SIAM J IMAG SCI
[3]   Image deblurring with Poisson data: from cells to galaxies [J].
Bertero, M. ;
Boccacci, P. ;
Desidera, G. ;
Vicidomini, G. .
INVERSE PROBLEMS, 2009, 25 (12)
[4]  
Bovik AC, 2006, MODERN IMAGE QUALITY
[5]   Infimal Convolution of Data Discrepancies for Mixed Noise Removal [J].
Calatroni, Luca ;
De Los Reyes, Juan Carlos ;
Schoenlieb, Carola-Bibiane .
SIAM JOURNAL ON IMAGING SCIENCES, 2017, 10 (03) :1196-1233
[6]   IMAGE DENOISING: LEARNING THE NOISE MODEL VIA NONSMOOTH PDE-CONSTRAINED OPTIMIZATION [J].
Carlos De los Reyes, Juan ;
Schoenlieb, Carola-Bibiane .
INVERSE PROBLEMS AND IMAGING, 2013, 7 (04) :1183-1214
[7]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[8]   An Adaptive Strategy for the Restoration of Textured Images using Fractional Order Regularization [J].
Chan, R. H. ;
Lanza, A. ;
Morigi, S. ;
Sgallari, F. .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (01) :276-296
[9]   MULTI-QUADRATIC DYNAMIC PROGRAMMING PROCEDURE OF EDGE-PRESERVING DENOISING FOR MEDICAL IMAGES [J].
Cong Thang Pham ;
Kopylov, Andrey V. .
PHOTOGRAMMETRIC TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2015, 40-5 (W6) :101-106
[10]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095