Composition Operators on Bounded Convex Domains in Cn

被引:0
作者
Koo, Hyungwoon [1 ]
Li, Song-Ying [2 ,3 ]
机构
[1] Korea Univ, Dept Math, Seoul 136713, South Korea
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Fujian Normal Univ, Sch Math & CS, Fuzhou, Fujian, Peoples R China
关键词
Composition operator; Boundedness; Convex domain; Finite type domain; Smooth symbol; PSEUDOCONVEX DOMAINS; BERGMAN SPACES; HARDY;
D O I
10.1007/s00020-016-2300-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study composition operators on a class of bounded domains including convex domains Omega subset of C-n. We show that a general self-map phi of Omega always induces a bounded operator C-phi : A(alpha)(p)(Omega) -> A(alpha+n-1)(p) (Omega) and the weight gain n - 1 is optimal in certain sense. When phi is smooth, we provide explicit examples which reveal aspects quite different from the strongly pseudoconvex domain setting.
引用
收藏
页码:555 / 572
页数:18
相关论文
共 18 条
[1]  
[Anonymous], 1988, Contributions to operator theory and its applications
[2]  
[Anonymous], MATH SCAND
[3]   CONSTRUCTION OF PEAK FUNCTIONS ON WEAKLY PSEUDOCONVEX DOMAINS [J].
BEDFORD, E ;
FORNAESS, JE .
ANNALS OF MATHEMATICS, 1978, 107 (03) :555-568
[4]  
Cima J., 1995, J OPER THEORY, V33, P363
[5]  
Cowen C., 1995, Composition operators on spaces of analytic functions
[6]   Holder estimates on convex domains of finite type [J].
Diederich, K ;
Fischer, B ;
Fornæss, JE .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (01) :43-61
[7]  
GILBARG D., 2015, Elliptic Partial Differential Equations of Second Order
[8]   Carleson embedding theorem on convex finite type domains [J].
Jasiczak, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (01) :167-189
[9]   GLOBAL REGULARITY FOR EBAR ON WEAKLY PSEUDO-CONVEX MANIFOLDS [J].
KOHN, JJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) :273-292
[10]  
Kohr M, 2005, STUD U BABES-BOL MAT, V50, P129