A fractional calculus approach to nonlocal elasticity

被引:118
作者
Carpinteri, A. [1 ]
Cornetti, P. [1 ]
Sapora, A. [1 ]
机构
[1] Politecn Torino, Dept Struct Engn & Geotech, I-10129 Turin, Italy
关键词
DERIVATIVES; LOCALIZATION; MECHANICS;
D O I
10.1140/epjst/e2011-01391-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
If the attenuation function of strain is expressed as a power law, the formalism of fractional calculus may be used to handle Eringen nonlocal elastic model. Aim of the present paper is to provide a mechanical interpretation to this nonlocal fractional elastic model by showing that it is equivalent to a discrete, point-spring model. A one-dimensional geometry is considered; the static, kinematic and constitutive equations are presented and the governing fractional differential equation highlighted. Two numerical procedures to solve the fractional equation are finally implemented and applied to study the strain field in a finite bar under given edge displacements.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 23 条
[1]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[2]   ON THE ROLE OF GRADIENTS IN THE LOCALIZATION OF DEFORMATION AND FRACTURE [J].
AIFANTIS, EC .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1992, 30 (10) :1279-1299
[3]   Generalized wave equation in nonlocal elasticity [J].
Atanackovic, T. M. ;
Stankovic, B. .
ACTA MECHANICA, 2009, 208 (1-2) :1-10
[4]   A fractional calculus approach to the description of stress and strain localization in fractal media [J].
Carpinteri, A ;
Cornetti, P .
CHAOS SOLITONS & FRACTALS, 2002, 13 (01) :85-94
[5]  
Carpinteri A., 1997, Fractals and Fractional Calculus in Continuum Mechanics
[6]  
Carpinteri A., 2009, P 19 IT C THEOR APPL, P315
[7]   Scaling laws and multiscale approach in the mechanics of heterogeneous and disordered materials [J].
Carpinteri, Alberto ;
Cornetti, Pietro ;
Puzzi, Simone .
APPLIED MECHANICS REVIEWS, 2006, 59 (1-6) :283-305
[8]   Fractional calculus in solid mechanics: local versus non-local approach [J].
Carpinteri, Alberto ;
Cornetti, Pietro ;
Sapora, Alberto ;
Di Paola, Mario ;
Zingales, Massimiliano .
PHYSICA SCRIPTA, 2009, T136
[9]   Static-kinematic fractional operators for fractal and non-local solids [J].
Carpinteri, Alberto ;
Cornetti, Pietro ;
Sapora, Alberto .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (03) :207-217
[10]   Elastic waves propagation in 1D fractional non-local continuum [J].
Cottone, Giulio ;
Di Paola, Mario ;
Zingales, Massimiliano .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 42 (02) :95-103