A convergent adaptive finite element method for an optimal design problem

被引:14
作者
Bartels, Soren [2 ]
Carstensen, Carsten [1 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[2] Univ Bonn, Inst Numer Simulat, D-53115 Bonn, Germany
关键词
D O I
10.1007/s00211-007-0122-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The optimal design problem for maximal torsion stiffness of an infinite bar of given geometry and unknown distribution of two materials of prescribed amounts is one model example in topology optimisation. It eventually leads to a degenerate convex minimisation problem. The numerical analysis is therefore delicate for possibly multiple primal variables u but unique derivatives sigma := DW(Du). Even fine a posteriori error estimates still suffer from the reliability-efficiency gap. However, it motivates a simple edge-based adaptive mesh-refining algorithm (AFEM) that is not a priori guaranteed to refine everywhere. Its convergence proof is therefore based on energy estimates and some refined convexity control. Numerical experiments illustrate even nearly optimal convergence rates of the proposed AFEM.
引用
收藏
页码:359 / 385
页数:27
相关论文
共 26 条
[1]  
Allaire G., 2012, Shape Optimization by the Homogenization Method
[2]  
Bartels S, 2004, INTERFACE FREE BOUND, V6, P253
[3]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[4]  
Brenner SC, 2004, ENCY COMPUTATIONAL M, DOI [10.1002/0470091355.ecm003, DOI 10.1002/0470091355.ECM003]
[5]   Numerical analysis of compatible phase transitions in elastic solids [J].
Carstensen, C ;
Plechác, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (06) :2061-2081
[6]   Adaptive finite element methods for microstructures? Numerical experiments for a 2-well benchmark [J].
Carstensen, C ;
Jochimsen, K .
COMPUTING, 2003, 71 (02) :175-204
[7]   Local stress regularity in scalar nonconvex variational problems [J].
Carstensen, C ;
Müller, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (02) :495-509
[8]   Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM [J].
Carstensen, C ;
Bartels, S .
MATHEMATICS OF COMPUTATION, 2002, 71 (239) :945-969
[9]   Numerical solution of the scalar double-well problem allowing microstructure [J].
Carstensen, C ;
Plechac, P .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :997-1026
[10]  
CARSTENSEN C, 2007, IN PRESS IMA J NUMER