Euler system for Galois deformations

被引:25
作者
Ochiai, T [1 ]
机构
[1] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
Euler system; Hida theory; Iwasawa main conjecture;
D O I
10.5802/aif.2091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop the Euler system theory for Galois deformations. By applying this theory to the Beilinson-Kato Euler system for Hida's nearly ordinary modular deformations, we prove one of the inequalities predicted by the two-variable Iwasawa main conjecture. Our method of the proof of the Euler system theory is based on non-arithmetic specializations. This gives a new simplified proof of the inequality between the characteristic ideal of the Selmer group of a Galois deformation and the ideal associated to a Euler system even in the case of Z-extensions already treated by Kato, Perrin-Riou, Rubin.
引用
收藏
页码:113 / +
页数:35
相关论文
共 32 条
[1]  
[Anonymous], 1994, CONTEMP MATH-SINGAP
[2]  
[Anonymous], 1993, ELEMENTARY THEORY L
[3]  
[Anonymous], GRUNDLEHREN MATH WIS
[4]  
Bloch S., 1990, PROGR MATH, P333, DOI 10.1007/978-0-8176-4574-8_9
[5]  
Bourbaki N, 1985, ELEMENTS MATH
[6]  
Deligne P., 1969, Seminaire Bourbaki, Expose, V355, P139
[7]  
Deligne P., 1979, P S PURE MATH 2, V2, P247
[8]  
FLACH M, 1990, J REINE ANGEW MATH, V412, P113
[9]  
FONTAINE JM, 1988, PERIODES P ADIQUES S, V223, P1994
[10]   P-ADIC L-FUNCTIONS AND P-ADIC PERIODS OF MODULAR-FORMS [J].
GREENBERG, R ;
STEVENS, G .
INVENTIONES MATHEMATICAE, 1993, 111 (02) :407-447